
PACKAGES AND ENVIRONMENTS MANAGEMENT WITH

Marcel Martin
https://nbisweden.github.io/workshop-conda/ Jacques Dainat Ph.D.

https://nbisweden.github.io/workshop-conda/

REPRODUCTIBILITY CRISIS

2

The purely functional software deployment model / Eelco Dolstra - [S.l.] : [s.n.], 2006 - Tekst. - Proefschrift Universiteit Utrecht

Dependencies hell (scripts, tools, DB, ref etc)

Dependencies hell

ToolA new tool
installation ToolBdepA_v1

depB_v1

libA_v1

depB_v1

depA_v2

Computer
(OS) update

libA_v1

libB_v1

libA_v2depA_v3

depB_v2

NOW

• Tools A and/or B may provide different results or stop to work
• A new Tools C cannot be installed due to compilation requirements

competing with another tool

3

Conda dependency manager

Each environment will have its own dependencies

Conda strength: - tool precompiled
- isolated environments with defined dep/software versions

Drawback: - conda environment can be heavy

depB_v1

depA_v1

depB_v1

depA_v2

depB_v1

depA_v1

4

Conda dependency manager

5

https://nbisweden.github.io/excelerate-scRNAseq/conda_instructions.html

6

Conda: a package, dependency, and environment manager

• Like apt, brew, pip, yum, etc., but with focus on data science

• Supports Linux, macOS, Windows

• Packages come pre-compiled

• On Linux, they work on most distributions

• Packages are hosted centrally at anaconda.org

• Users can contribute their own packages via channels (think YouTube)

• Most important for us :

• The defaults channel (11 270 packages)

• The conda-forge channel (21 455 packages)

• The Bioconda channel (9894+ packages)
Both are community-driven

https://anaconda.org/
https://conda-forge.org/
https://bioconda.github.io/

CONDA terms

• Conda: The package manager

• conda: The command-line program

• Anaconda, Inc: The company (previously Continuum Analytics, Inc)

• Anaconda: A distribution of many data-science packages managed by conda

• miniconda: A much smaller distribution that only contains conda

• Mamba: A faster, drop-in replacement for conda

• Bioconda: A bioinformatics-focused channel for Conda packages

• conda-forge: A community-driven channel for everything else

7

Using Conda on your laptop

• Download Miniconda and install it:

• Set up the Bioconda channel:

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge
conda config --set channel_priority strict

$ curl -sO https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash Miniconda3-latest-Linux-x86_64.sh
Welcome to Miniconda3 ...
[...]

8

Conda limit

Conda is sometimes slow

• Conda installs a package and all required dependencies, observing constraints on
the version.

Example:
• A workflow needs tools x and y.
• x requires snakemake
• Recent snakemake versions require python>=3.7
• Tool y requires python<=3.6
→ The dependency resolver needs to find an older snakemake version still
compatible with Python 3.6.

• Solving which package versions satisfy all requirements is an NP-complete problem

• For channels with many packages (conda-forge) and/or packages with many
dependencies, dependency resolution can take hours.

9

Mamba to the rescue

Mamba is a replacement for conda with a much faster dependency resolver

• Same command-line interface as conda (in most cases)

• Install it (from conda-forge):

conda install –n base mamba

10

https://mamba.readthedocs.io/en/latest/

Conda environments

11

Conda environment basics

• Anything installed by Conda is put into a Conda environment.

o A single environment contains a consistent set of packages (compatible with each other)

o Different environments are independent of each other

• The default environment is called base

o It contains Conda itself and its dependencies such as Python

• The base environment is the only one that cannot easily be deleted and re-created, so keep it

clean

o Best to use it only for Conda-related tools (mamba, conda-build etc.)

• For anything else, create a new environment

12

Working with environments

• Example: Create an environment named mapping and install Samtools and Bowtie2 into it:

• To use the software you must activate the environment:

• To install a package into an existing environment:

• To install into the currently active environment:

• You can use =, >=, <= to constrain package versions

• Find packages by searching anaconda.org or with conda search

conda create –n mapping samtools bowtie2

$ conda activate mapping
$ samtools --version
samtools 1.15.1

conda install -n mapping bwa=0.7.17

conda install bwa=0.7.17

13

Treat Conda environments as ephemeral

• To test a new tool, install it into a fresh Conda environment. Then delete the
environment to uninstall.

• To find out when the bug you’re seeing in a tool was introduced, install older
versions into a temporary environment.

• If your project’s environment got messed up, just delete it and start over.

• Environments are just directories within your Conda installation directory

o ~/miniconda/envs/mapping or similar

o Activating an environment adds its bin/ directory to your $PATH

conda env remove -n mapping

14

Persisting and sharing environments

• Environment files specify how to create an environment.

• Example environment.yaml:

•To create the environment, run:

•The YAML file can be written manually or be generated from an existing
environment:

• --no-builds is recommended in the Bioconda FAQ

name: bwa
channels:
- conda-forge
- bioconda
- defaults
dependencies:
- bwa=0.7.17

mamba env create -f environment.yaml # Note: "env create", not "create"

conda env export --no-builds [--from-history] > environment.yaml

15

http://bioconda.github.io/faqs.html

Categories of environment files

Environment files can be abstract or concrete (or in between).

Abstract dependencies: List only pysam and Conda will pick a suitable version for it and its
dependencies.

• Good at development time and when you develop something that needs to be
installable alongside other tools.

• Not reproducible. If a dependency is updated, your tool or workflow may produce
different results.

Concrete dependencies: List pysam=0.19.1 and all dependencies and their versions.

• This is what conda env export creates.

• Reproducible.

• Very unflexible. Installing another tool into the environment likely leads to conflicts.

• Probably platform-specific. You need one concrete environment.yaml for each
platform you support.

16

Abstract or concrete?

For some projects, using both abstract and concrete makes sense:

• The abstract dependencies define what your software depends on

• The concrete dependencies (one file for each platform) are used for
your tests (CI)

• The concrete environments are generated from the abstract one.

17

More ways to create reproducible environment specifications

• Exactly reproduces environments (on one platform)

• It is very fast because Conda no longer resolves dependencies

• Recreating the environment can fail when files are removed from anaconda.org

$ conda list --export
This file may be used to create an environment using:
$ conda create --name <env> --file <this file>
platform: linux-64
...
bwidget=1.9.14=ha770c72_1
bzip2=1.0.8=h7f98852_4
...

$ conda list --explicit
...
@EXPLICIT
...
https://conda.anaconda.org/conda-forge/linux-64/bwidget-1.9.14-ha770c72_1.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/bzip2-1.0.8-h7f98852_4.tar.bz2
...

--explicit includes channels!

18

A last word

Conda is designed to make your life as a bioinformatician easier!

Conda works well with workflow managers!

19

