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ASSEMBLY ALGORITHMS



De novo transcriptome assembly

Most of the modern assemblers works in K-mer space



De novo transcriptome assembly

or 
Transcriptome



Assembly algorithms 

• Data model 
– Overlap-Layout-Consensus (OLC) 
– Eulerian / de Bruijn Graph (DBG) 

• Search method
– Greedy
– Non-greedy

• Parallelizability
– Multithreaded
– Distributable



What is a “k-mer” ? 

• A k-mer is a sub-string of length k 
• A string of length L has (L-k+1) k-mers
• Example read L=8 has 5 k-mers when k=4 

AGATCCGT 
AGAT
GATC
ATCC
TCCG 
CCGT 



What is a graph ?

• Not an Excel chart! 
• Nodes/Vertices

– A,B,E,G,H,K,M 
• Edges/Arcs

– (lines between nodes) 
• Directed graph

– Arrow head on edge
• Weighted graph

– Numerals on edges



Overlap - Layout – Consensus 

• Overlap
– All against all pair-wise comparison
– Build graph: nodes=reads, edges=overlaps

• Layout
– Analyse/simplify/clean the overlap graph 
– Determine Hamiltonian path (NP-hard) 

• Consensus 
– Align reads along assembly path
– Call bases using weighted voting



OLC : Pairwise Overlap 

• All against all pair-wise comparison
– 1⁄2 N(N-1) alignments to perform [N=no. reads] 

• In practice, use smarter heuristics
– Index all k-mers from all reads

– Only check pairs that share enough k-mers

– Similar approach to BLAST algorithm

• Both approaches parallelizable
– Each comparison is independent



OLC: Overlap Example 

• True sequence (7bp) : AGTCTAT 
• Reads (3 x 4bp) : AGTC, GTCT, CTAT 
• Pairs to align (3)

AGTC+GTCT  ,   AGTC+CTAT  ,   GTCT+CTAT 
• Best overlaps
AGTC- AGTC--- GTCT–
-GTCT      ---CTAT      --CTAT 
(good)     (poor)        (ok) 



OLC: Overlap Graph 

• Nodes are the 3 
reads sequences

• Edges are the 
overlap alignment
with orientation 



OLC: Overlap Graph 

• Nodes are the 3 
reads sequences

• Edges are the 
overlap alignment
with orientation 

• Edge thickness
represents score of 
overlap

good poor

ok



OLC: Layout – Consensus 

• Optimal path shown in 
green 

• Un-traversed weak
overlap in red

• Consensus is read by 
outputting the 
overlapped nodes along
the path

• aGTCTCTat



OLC : Softwares

• Phrap, PCAP, CAP3
• Smaller scale assemblers

• Celera Assembler
• Sanger-era assembler for large genomes

• Arachne, Edena, CABOG, Mira 4
• Modern Sanger/hybrid assemblers

• Newbler (gsAssembler) 
• Used for 454 NGS “long” reads
• Can be used for IonTorrent flowgrams too

• More recently : TraRECo: a greedy approach based de novo 
transcriptome assembler with read error correction using
consensus matrix. Yoon BMC Genomics. 2018; 19: 653. 
(doi: 10.1186/s12864-018-5034-x)

https://dx.doi.org/10.1186%2Fs12864-018-5034-x


Eulerian approach 

• Break all reads (length L) into (L-k+1) k-mers
– L=36, k=31 gives 6 k-mers per read

• Construct a de Bruijn graph (DBG) 
– Nodes = one for each unique k-mer

– Edges = k-1 exact overlap between two nodes

• Graph simplification 
– Merge chains, remove bubbles and tips

• Find a Eulerian path through the graph 
– Linear time algorithm, unlike Hamiltonian





DBG : simple 

• Sequence
AACCGG 

• K-mers (k=4) 
AACC ACCG CCGG 

• Graph 



DBG : repeated k-mer

• Sequence
AATAATA 

• K-mers (k=4) 
AATA ATAA TAAT AATA (repeat)

• Graph 



DBG: alternate paths 

• Sequence
CAATATG 

• K-mers (k=3) 
CAA AAT ATA TAT ATG 

• Graph 



DBG: graph simplification 

• This problem is known to be NP-complete

• In practice, heuristics are used which consist
in simplifying the graph to « make it linear » 

• However, the structures that are removed
may correspond to relevant biological
structures (SNPs, alternative splicing) 



DBG: graph simplification 

• Remove tips or spurs
– Dead ends in graph due to errors at read end 

• Collapse bubbles
– Errors in middle of reads
– But could be true SNPs or diploidity

• Remove low coverage paths
– Possible contamination

• Makes final Eulerian path easier
– And hopefully more accurate contigs 



Example of DBG built from
Genome data - RNA-seq data 

Genome RNAseq

Entire chromosomes represented Ideally, one graph per expressed gene



Polymorphism in RNA-seq data 



DBG: softwares

• Velvet/Oases
– Velvet (Zerbino, Birney 2008) is a sophisticated set of 

algorithms that constructs de Bruijn graphs, simplifies 
the graphs, and corrects the graphs for errors and 
repeats. 

– Oases (Schulz et al. 2012) post-processes Velvet 
assemblies (minus the repeat correction) with 
different k-mer sizes.

• Trans-ABySS
– Trans-ABySS (Robertson et al. 2010) takes multiple 

ABySS assemblies (Simpson et al. 2009)
• CLC bio Genomics Workstation
• Trinity



OLC vs DBG

• DBG 
– More sensitive to repeats and read errors
– Graph converges at repeats of length k 
– One read error introduces k false nodes
– Parameters: kmer_size cov_cutoff ... 

!!Underline the importance of reads errors correction!!

• OLC 
– Less sensitive to repeats and read errors
– Graph construction more demanding
– Doesn't scale to voluminous short reads
– Parameters: minOverlapLen %id ... 
– OLC assembly is best suited to lower coverage, longer read data such

as Sanger, 454, or PacBio.



Spliced alignment of 
RNA-Seq to genome

Transcript reconstruction
from RNA-Seq spliced alignments

Genome

Genome

RNA-Seq reads

The short read alignments, instead of the 
reads themselves, are assembled into gene 
structures

Contemporary strategies for transcript 
reconstruction from RNA-Seq



De novo transcript assembly
Spliced alignment of 
RNA-Seq to genome

Transcript reconstruction 
from spliced alignment of 
assembled transcripts to genomeTranscript reconstruction

from RNA-Seq spliced alignments

Genome

Genome

+

RNA-Seq reads

Reconstruct transcripts that lack 
representation in the reference 
genome.

Contemporary strategies for transcript 
reconstruction from RNA-Seq



De novo transcript assembly
Spliced alignment of 
RNA-Seq to genome

Transcript reconstruction 
from spliced alignment of 
assembled transcripts to genomeTranscript reconstruction

from RNA-Seq spliced alignments

Genome

Genome

Tophat
STaR
HiSAT2

Cufflinks
Scripture +

RNA-Seq reads

Contemporary strategies for transcript 
reconstruction from RNA-Seq

Gmap

Oases
SOAPdenovo-trans
TransABYSS



RNA-Seq analysis



De novo transcriptome assembly

?



Brian Haas
Moran Yassour
Kerstin Lindblad-Toh
Aviv Regev
Nir Friedman
David Eccles
Alexie Papanicolaou
Michael Ott
…

developed at the Broad Institute

Transcriptome assembly with Trinity

Additional tools, plug-ins, and documentation continually added to the Trinity Suite 

http://www.broadinstitute.org/


- Compress data (inchworm):
- Cut reads into k-mers (k consecutive nucleotides)
- Overlap and extend (greedy)
- Report all sequences (“contigs”)

- Build de Bruijn graph (chrysalis):
- Collect all contigs that share k-1-mers
- Build graph (disjoint “components”) 
- Map reads to components

- Enumerate all consistent possibilities (butterfly):
- Unwrap graph into linear sequences
- Use reads and pairs to eliminate false sequences
- Use dynamic programming to limit compute time (SNPs!!)

Trinity workflow



Inchworm Algorithm

Decompose all reads into overlapping Kmers (25-mers) and count them : Jellyfish

Extend kmer at 3’ end, guided by coverage.

G

A

T

C

Identify seed kmer as most abundant Kmer, ignoring low-complexity kmers.

GATTACA
9



Inchworm Algorithm
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GATTACA

G

A

4

9

5

A6

A
7

Remove assembled kmers from catalog, then repeat the entire process.

Report contig:      ….AAGATTACAGA…. 

Inchworm Algorithm



Inchworm Contigs from Alt-Spliced Transcripts



+

Inchworm can only report contigs derived from unique kmers.

Alternatively spliced transcripts :
- the more highly expressed transcript may be reported as a single contig, 
- the parts that are different in the alternative isoform are reported separately.

Inchworm Contigs from Alt-Spliced Transcripts



Chrysalis

Integrate (clustering) 
Isoforms via k-1 overlaps



Integrate (clustering) 
Isoforms via k-1 overlaps

Chrysalis



Integrate (clustering) 
Isoforms via k-1 overlaps

read pairing information 
to include minimally 
overlapping contigs

Chrysalis



Verify via “welds”

read pairing information 
to include minimally 
overlapping contigs

Integrate (clustering) 
Isoforms via k-1 overlaps

Chrysalis



Build de Bruijn Graphs
(ideally, one per gene)
Build de Bruijn Graphs
(ideally, one per gene)

read pairing information 
to include minimally 
overlapping contigs

Verify via “welds”

Integrate (clustering) 
Isoforms via k-1 overlaps

Chrysalis



Butterfly



Butterfly



Butterfly



Alternatively spliced transcripts



Results

> TRINITY_DN1000_c101030_g1_i2 len=836 path=[2844:0-16 87:17-
67 4106:68-199 @4179@!:200-448 519:449-463 @534@!:464-625 
4260:626-626 4262:627-633 704:634-755 4358:756-756 4359:757-
802 4457:803-835]
GAACCGCTCTTCCGATCTTGAATAGATACATTCTATTTTAAATGAAAATAATATTCAAAA
CAGTTGTTTCTCTGTTCAGTTACTCCGATTTACCCCATTCCATCAACAATGTCACACATC
ATTCGGTCAAGTTGATCACAAGGTTCCGTTTCCATGTCATAACCATTATGATGCTGAGAT
GCTTGCAAGAGTTCAGTTTTGACTAAACTTTTGGAATCAAAACTGAAATCTTCTGGCAAG
CTCTGCAGACTGGTCTGAATTAGTTCTTTCACTTTATTCAAATGAGTTTCAAAGTTCTTT
GATATTTGTGCACGCTCTTTCTTCTGTCTCTCCATCATGACACGAAGAGTCTCCCGAGCT
TGATGCGGCCTGAACTCATTTATCAAATGATGCATGTGTATGAATAACAAGTTGAGATCT
TCCAACTTTTCAGTGCGTTTTGTTGAGTCGGGGGCCTTTATTAAAATGTCTATCAAATCC
AAAAAATTCACCAGAATGGAATGATTCAACTTCTTCAGCTCTCTTTTATGATCATAATTC
TGTGGATGCAATCTACGAAATCCCTGGGATTCTAAAGGTCTGATGATGGCATCATCTGCA
TTAAAGTGAGCTCCAAACATAGTGTAGGTATCCTGAATTGGAGGGGGTGGTAGAGGGACT
CGGCCTCTCTTGACATTTTCATCAGTGTACATATTGAAATACTTGCTGGGAGGGAGAGGG
AAAGCACTTACACCTTGATTCTCTGCCATGGCTTCTGATTATACGCAGAAACAAACTGTC
TTGTTTGTCTATGGTTTGTGTCTTGTTTGATGATTTTCTTCTTCTAGGCTACTTTT

TRINITY_DNW_cX_gY_iZ (until release 2.0 cX_gY_iZ previously compX_cY_seqZ
TRINITY_DNW_cX defines the graphical component generated by Chrysalis (from clustering inchworm contigs). 
Butterfly might tease subgraphs apart from each other within a single component, based on the read support data . 
This gives rise to subgraphs (gY).: trinity genes
Each subgraph then gives rise to path sequences (iZ). : trinity isoforms
(path) list of vertices in the compacted graph that represent the final transcript sequence and the range within the given assembled
sequence that those nodes corresond to.

Result: linear sequences grouped in components, contigs and sequences
>TRINITY_DN1000_c101030_g1_i1 len=1072 path=[1:0-85 87:86-136 4106:137-
268 @4179@!:269-517 519:518-532 @534@!:533-694 4261:695-695 4262:696-702 
2227:703-719 @2244@!:720-821 2346:822-825 2350:826-848 @4440@!:849-992 
2517:993-1008 2533:1009-1071]
AAAGATTTATGATGACAATGACAACGATGGACAACGGACAAAAACAAAATGAAAAAGTAT
TAAATTCTTATACAGGTAGTCATTTATTGAATAGATACATTCTATTTTAAATGAAAATAA
TATTCAAAACAGTTGTTTCTCTGTTCAGTTACTCCGATTTACCCCATTCCATCAACAATG
TCACACATCATTCGGTCAAGTTGATCACAAGGTTCCGTTTCCATGTCATAACCATTATGA
TGCTGAGATGCTTGCAAGAGTTCAGTTTTGACTAAACTTTTGGAATCAAAACTGAAATCT
TCTGGCAAGCTCTGCAGACTGGTCTGAATTAGTTCTTTCACTTTATTCAAATGAGTTTCA
AAGTTCTTTGATATTTGTGCACGCTCTTTCTTCTGTCTCTCCATCATGACACGAAGAGTC
TCCCGAGCTTGATGCGGCCTGAACTCATTTATCAAATGATGCATGTGTATGAATAACAAG
TTGAGATCTTCCAACTTTTCAGTGCGTTTTGTTGAGTCGGGGGCCTTTATTAAAATGTCT
ATCAAATCCAAAAAATTCACCAGAATGGAATGATTCAACTTCTTCAGCTCTCTTTTATGA
TCATAATTCTGTGGATGCAATCTACGAAATCCCTGGGATTCTAAAGGTCTGATGATGGCA
TCATCTGCATTAAAGTGAGCTCCAAACATAGTGTATGTATCCTTCAAAAGAACATGAAAG
CTTTTAATAAAAAGTTTTATCAAGTTTTGTTATGTGTGTTCCCGAGATTTAAAATCATTC
TGTCTTTACATTTCTTTATTCTGTGCTACACCTTTCAAACTACCAGCACATAAATGGGGA
CCTAACAAATCACTGGAATGCATATTACATGTATATTTTGGTGTTAACAATGATTTTTTA
AGTTTTACAATCCTATAAACCTCAAAGATTATAGGAAAATGCTGCACAATATAAAATCTT
TATTCTTATTAGTAACAGTTTAAGAGTAAATCAAATTTTATCTGTATTTAATTTTATCTG
TATTTAATTTTCTATTGAATCAAGACACTCACCTGAATTGGAGGGGGTGGTA



Iyer MK, Chinnaiyan AM (2011) 
Nature Biotechnology 29, 599–600 

Summary



Iyer MK, Chinnaiyan AM (2011) 
Nature Biotechnology 29, 599–600 

Summary



Iyer MK, Chinnaiyan AM (2011) 
Nature Biotechnology 29, 599–600 

Summary



- Heuristic : re-running the assembly step lead to a 

different assembly

- Many transcripts (up to 300 000 for 30 000 genes)

- Add a clustering step (uclust, cap 3)
- Trinity «REDUCE» option : Trinity.pl --bfly_opts 

" --REDUCE "
- Exclude the low coverage contigs (FPKM < 1) 

- Frequent Version release : 18 versions in 1 ½ year.

Trinity cons.

59



- Integration cleaning step (trimmomatic)

- Integration of normalization steps
- Accept reads when its average kmer coverage does not exceed a defined 

threshold
- Removes reads with too much variability in kmer coverage 

- Integration of DE step

- Integration of annotation step (trinotate)

- Accept reference genome 

- Accept long reads

- Multiple kmer choice (in progress)

Trinity pro



Trinity programs 
Trinity (perl script to glue it all together) 
Inchworm
Chrysalis
Butterfly (Java code – needs Java 1.7) 
various utility and analysis scripts (in perl) 

Bundled third-party software 
Trimmomatic: clean up reads by trimming and removing adapter remnants (Bolger, A. M., 
Lohse, M., & Usadel, B) 
Jellyfish: k-mer counting software 
Fastool: fasta and fastq format reading and conversion (Francesco Strozzi) 
ParaFly: parallel driver (Broad Institute) 
Slclust: a utility that performs single-linkage clustering with the option of applying a Jaccard 
similarity coefficient to break weakly bound clusters into distinct clusters (Brian Haas) 
Collectl : system performance monitoring (Peter Seger) 
Post-assembly analysis helper scripts (in perl) 

External software Trinity depends on (needs to be in the search PATH): 
samtools

Bowtie
RSEM, eXpress: alignment-based abundance estimation (Bo Li and Colin Dewey) 
kallisto, salmon: alignment-free abundance estimation 
Transcoder: identify candidate coding regions in within transcripts (Brian Haas - Broad, Alexie 
Papanicolaou – CSIRO) 



Additional Trinity scripts : Plotting Pairwise Differential
Expression Data 

Significantly differently expressed transcripts have FDR <= 0.001 
(shown in red)



Additional Trinity scripts : Comparing Multiple 
Samples

Heatmaps provide an effective tool
for navigating differential expression across
multiple samples.
Clustering can be performed across both axes: 
-cluster transcripts with similar expression 
patterns.
-cluster samples according to similar
expression values among transcripts.



Examining Patterns of Expression Across Samples

Can extract clusters of transcripts and examine them separately. 



Additional Trinity scripts : magic (not so)  hidden folders

TrinityStats.pl

filter_low_expr_transcripts.pl

insilico_read_normalization.pl

retrieve_sequences_from_fasta.pl

abundance_estimates_to_matrix.pl
align_and_estimate_abundance.pl
run_DE_analysis_from_samples_file.pl
run_expr_quantification_from_samples_file.pl

analyze_blastPlus_topHit_coverage.pl

util



Additional Trinity scripts : magic (a little bit more) hidden
folder

acc_list_to_fasta_entries.pl
alexie_analyze_blast.pl
align_reads_launch_igv.pl
…
fasta_seq_length.pl
fasta_filter_by_min_length.pl
fasta_remove_duplicates.pl
…
map_gtf_transcripts_to_genome_annots.pl
merge_blast_n_rsem_results.pl
merge_rsem_n_express_for_compare.pl
merge_RSEM_output_to_matrix.pl
…
run_HISAT2_via_samples_file.pl
run_jellyfish.pl
run_read_simulator_per_fasta_entry.pl
run_read_simulator_per_gene.pl

160 scripts !!!

util/misc



Trinity usage and options

Typical Trinity command
Trinity --seqType fq --max_memory 50G 
\--left A_rep1_left.fq --right A_rep1_right.fq --CPU 4

Running a typical Trinity job requires ~1 hour and ~1G RAM per ~1 million PE reads.

The assembled transcripts will be found at 'trinity_out_dir/Trinity.fasta'.

Trinity --seqType fq --max_memory 50G --single single.fq --
CPU 4



Trinity statistics

TRINITY_HOME/util/TrinityStats.pl Trinity.fasta

################################ 
## Counts of transcripts, etc.
################################ 
Total trinity 'genes': 7648 
Total trinity transcripts: 7719 
Percent GC: 38.88 
######################################## 
Stats based on ALL transcript contigs: 
######################################## 
Contig N10: 4318
Contig N20: 3395 
Contig N30: 2863 
Contig N40: 2466 
Contig N50: 2065 
Median contig length: 1038 
Average contig: 1354.26 
Total assembled bases: 10453524 

##################################################### 
## Stats based on ONLY LONGEST ISOFORM per 'GENE': 
##################################################### 
Contig N10: 4317 
Contig N20: 3375 
Contig N30: 2850 
Contig N40: 2458 
Contig N50: 2060 
Median contig length: 1044 
Average contig: 1354.49 
Total assembled bases: 10359175



Trinity usage and options

Typical Trinity command with multiple samples
Trinity --seqType fq --max_memory 50G --CPU 4
\--left A_rep1_left.fq,A_rep2_left.fq 
\--right A_rep1_right.fq,A_rep2_right.fq 

sample.txt
cond_A cond_A_rep1 A_rep1_left.fq A_rep1_right.fq
cond_A cond_A_rep2 A_rep2_left.fq A_rep2_right.fq
cond_A cond_A_rep3 A_rep3_left.fq A_rep3_right.fq
cond_B cond_B_rep1 B_rep1_left.fq B_rep1_right.fq
cond_B cond_B_rep2 B_rep2_left.fq B_rep2_right.fq
cond_B cond_B_rep3 B_rep3_left.fq B_rep3_right.fq

Trinity --seqType fq --max_memory 50G --CPU 4
\--samples_file sample.txt



Trinity « genome guided »

Genome guided Trinity command
Trinity --genome_guided_bam rnaseq_alignments.csorted.bam --
max_memory 50G --genome_guided_max_intron 10000 --CPU 6

If your RNA-Seq sample differs sufficiently from your reference genome and you'd like to 
capture variations within your assembled transcripts

De novo assembly is restricted to only those reads that map to the genome. 

The advantage is that reads that share sequence in common but map to distinct parts of 
the genome will be targeted separately for assembly. 

The disadvantage is that reads that do not map to the genome will not be incorporated
into the assembly. 
-> Unmapped reads can, however, be targeted for a separate genome-free de novo 
assembly.

The assembled transcripts will be found at 'trinity_out_dir/Trinity-GG.fasta'.



Trinity « longreads »

Trinity --seqType fq --max_memory 50G --CPU 4
\--samples_file sample.txt --long_reads contigs.fasta

In short, the Trinity v2.4.0 version uses the pacbio reads mostly for path tracing in a 
graph that's built based on the illumina reads (not build using illumina and pacbio) .

contigs.fasta: 
fasta file containing error-corrected or circular consensus (CCS) PacBio reads



Trinity including trimming and normalisation

Trinity --seqType fq --max_memory 50G --CPU 4
--samples_file sample.txt --trimmomatic
--quality_trimming_params "ILLUMINACLIP:illumina.fa:2:30:10 
SLIDINGWINDOW:4:5 LEADING:5 TRAILING:5 MINLEN:25"

• Trimming

Trinity --seqType fq --max_memory 50G --CPU 4
--samples_file sample.txt --trimmomatic
--quality_trimming_params "ILLUMINACLIP:illumina.fa:2:30:10 
SLIDINGWINDOW:4:5 LEADING:5 TRAILING:5 MINLEN:25 
--normalize_by_read_set

• Trimming and normalisation



Trinity usage and options

Minimum count for K-mers to be assembled by Inchworm
--min_kmer_cov <int>           : (default: 1)

èincrease coverage will reduce the contigs size assembled by Inchworm , 

Maximum number of reads to anchor within a single graph (Chrysalis)
--max_reads_per_graph <int>    : (default: 200000)
èdecrease time /memory for analysis if reduced
èdecrease sensibility

Maximum length expected between fragment pairs  (Butterfly)
--group_pairs_distance <int>    : (default: 500)
èreads outside this distance are treated as single-end.

Typical Trinity command
Trinity --seqType fq --max_memory 100G --left reads_1.fq  --
right reads_2.fq --CPU 6



Trinity usage and options
Graph compaction parameters (Butterfly ): --edge-thr + --flow-thr : 

inscrease threshold -> increase graph pruning 
èsegmented transcript reconstruction at low coverage regions, 
èlower sensitivity for detection of variant transcripts 

Transcript path extension read (pair) overlap 
requirements (Butterfly ). 

--path_reinforcement_distance
(default 75pb) 
-R (defaults 2 reads support) 

èUsing strict parameters (high minimal read support 
and long reinforcement distance) might prevent the 
extensions of paths resulting in a partially 
reconstructed transcript, with breaks at insufficient 
coverage regions. 
èHowever, using permissive parameters might fuse 
several distinct transcripts that have assembled 
together, possible due to overlapping un-translated 
regions (UTRs). 



Trinity usage and options
Merging insufficiently different path sequences 
during reconstruction (Butterfly).

–min_per_id_same_path (default 95%) 
–max_diffs_same_path (default 2) 
–max_internal_gap_same_path (default 10)

èUsing strict parameter assignments will result 
in a minimal non-redundant set of output 
assembled sequences, 

èA more permissive assignment is 
recommended in order to discover slight 
variants. 



Trinity usage and options

Reducing combinatorial path construction via 
triplet-locking (Butterfly): 

–triplet-lock (Butterfly) or 
–no_triplet_lock (Trinity.pl) 

èUsing the no_triplet_lock flag will result in a 
larger number of transcripts reported, of which 
some might be chimeric (lower specificity), but 
will ensure that all possible transcripts will be 
reported (higher sensitivity). 



Trinity usage and options

Reducing combinatorial path construction by path restriction (Butterfly): 
–max_number_of_paths_per_node (default: 10)

èUsing a low max_number_of_paths_per_node parameter will result in a much faster 
run of butterfly, reporting a minimal non-redundant set of transcripts. 



Trinity …. and friends



Schematic overview of the Oases pipeline:
(1) Individual reads are sequenced from an RNA 
sample; 
(2) Contigs are built from those reads, some of them 
are labeled as long (clear), others short (dark); 
(3) Long contigs, connected by single reads or read-

pairs are grouped into connected components called 
loci; 
(4) Short contigs are attached to the loci; and 
(5) The loci are transitively reduced. 
(6) Tranfrags are then extracted from the loci 

Schulz M H et al. Bioinformatics 2012;28:1086-1092

Velvet/Oases

chain

bubbles

forks

complex>Transfrag1
ACGCGCGCTCGCTCGCT …
>Transfrag2
ACGCGCGCATTTCGCTCGCT …

6
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Velvet/Oases vs Trinity

Velvet searches for connectivity in a de Bruijn graph using a depth search module. The 
search for a contig stops, as soon as a junction is reached in the de Bruijn graph. So, in the 
example graph presented above, Velvet will identify the branches 1, 2, 3 and 4 as separate
contigs. The role of Oases is to connect all those separate contigs to build the gene
structures.

Inchworm is different, because it runs a greedy algorithm that connects as many k-mers as 
possible without placing any k-mer into two separate contigs. Inchworm does not stop at
junctions, but continues forward with assembling contigs. For the graph presented in the 
above picture, Inchworm will identify 1+2+3 as one contig and 4 as a different contig.



Schulz M H et al. Bioinformatics 2012;28:1086-1092

Comparison of single k-mer Oases 
assemblies and the merged 
assembly from kMIN=19 to 
kMAX=35 by Oases-M, on the 
human dataset. 
The total number of Ensembl transcripts 

assembled to 80 of their length is provided by 

RPKM gene expression quantiles of 1464 genes 

each.

As expected, the assemblies with

longer k-values perform best on high

expression genes, but poorly on low

expression genes. However, short k-

mer assemblies have the 

disadvantage of introducing

misassemblies

Velvet/Oases : single kmer vs merged



Assemblers comparison

Clarke, K., Yang, Y., Marsh, R., Xie, L., & Zhang, K. K. (2013). Comparative analysis of de novo transcriptome
assembly. Science China Life Sciences, 56(2), 156–162.

Schulz M H et al. Bioinformatics 2012;28:1086-1092

« In summary, no assembler had consistent good performance in all the statistics. 
- For transcriptome assembly of prokaryotic cells that have simple gene structure, 
Trinity would be recommended. 
- For eukaryotic genome, both Oases and Trinity gave acceptable performance. »



Assemblers comparison

Liu J, Li G, Chang Z, Yu T, Liu B, et al. (2016) BinPacker: Packing-Based De Novo Transcriptome Assembly from RNA-seq Data. PLOS Computational 
Biology 12(2): e1004772. https://doi.org/10.1371/journal.pcbi.1004772
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004772

Comparison of recovered reference sensitivity and its distribution against recovered sequence length 
rates (sequence identity) ranging from 80% to 100% on (A) dog, (B) human and (C) mouse datasets.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004772


Assemblers comparison

Liu J, Li G, Chang Z, Yu T, Liu B, et al. (2016) BinPacker: Packing-Based De Novo Transcriptome Assembly from RNA-seq Data. PLOS Computational 
Biology 12(2): e1004772. https://doi.org/10.1371/journal.pcbi.1004772
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004772

Comparison of assembled true positive rate and its distribution against recovered sequence length rates 
(sequence identity) ranging from 80% to 100% on (A) dog, (B) human and (C) mouse datasets

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004772
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Liu J, Li G, Chang Z, Yu T, Liu B, et al. (2016) BinPacker: Packing-Based De Novo Transcriptome Assembly from RNA-seq Data. PLOS Computational 
Biology 12(2): e1004772. https://doi.org/10.1371/journal.pcbi.1004772
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004772

Running time for each assembler on (A) dog, (B) human and (C) mouse datasets

Trinity (version 2012-10-05)

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004772


Assemblers comparison
Huang X, Chen XG, Armbruster PA/Comparative performance of transcriptome assembly methods for non-model 
organisms. BMC Genomics. 2016 Jul 27;17:523. doi: 10.1186/s12864-016-2923-8. 

This study compared four transcriptome assembly methods, 
- a de novo assembler (Trinity)
- two transcriptome re-assembly strategies utilizing proteomic and genomic resources from closely
related species (reference-based re-assembly and TransPS) 
- a genome-guided assembler (Cufflinks)

« However, our results emphasize the efficacy
of de novo assembly, which can be as effective 
as genome-guided assembly when the 
reference genome assembly is fragmented. 

If a genome assembly and sufficient
computational resources are available, it can
be beneficial to combine de novo and 
genome-guided assemblies »
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New de novo transcriptome assemblers

• IDBA-Tran (Peng et al., Bioinf., 2014) 
• IDBA-MTP (Peng et al., RECOMB 2014)
• SOAPdenovo-Trans (Xie et al., Bioinf., 2014)
• Fu et al., ICCABS, 2014
• StringTie (Pertea et al., Nat. Biotech., 2015)
• Bermuda (Tang et al., ACM, 2015)
• Bridger (Chang et al.,  Gen. Biol. 2015)
• BinPacker (Liu et al. PLOS Comp Biol, 2016)
• FRAMA (Bens M et al., BMC Genomics 2016)
• rnaSPAdes (Bushmanova et al., bioRxiv, 2018)



Practice

2 Aller sur la practice 2 Assembling 
transcriptome from RNA-seq du github

https://southgreenplatform.github.io/trainings/trinityTrinotate/TP-trinity/

