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ASSEMBLY QUALITY ASSESSMENT
AND CLEANNING 

Transcriptome assembly



De novo Transcriptome Assembly is Prone to Certain Types of 
Errors 

Smith-Unna et al. Genome Research, 2016



Assembly quality assessment

• Assembly metrics

• Contigs length histogram and proteome 
comparison

• Reads mapping back rate 



Metrics

The possible metrics derived from genome
assembly: 
• Idea of global size (# bases) 
• Idea of number of elements (#contigs/scaffolds)
• Idea of compactness (N50): 



Metrics

• The number of contigs in the assembly

• The size of the smallest contig

• The size of the largest contig

• The number of bases included in the 

assembly

• The mean length of the contigs

• The number of contigs <200 bases

• The number of contigs >1,000 bases

• The number of contigs >10,000 bases

• The number of contigs that had an open 

reading frame

• The mean % of the contig covered by the 

ORF

• NX (e.G. N50): the largest contig size at 

which at least X% of bases are contained in 

contigs at least this length

• % Of bases that are G or C

• Gc skew

• At skew

• The number of bases that are N

• The proportion of bases that are N

• The total linguistic complexity of the 

assembly



N50 

• N50: given a set of contigs of varying lengths, the N50 length is defined as 

the length N for which 50% of all bases in the contigs are in contigs of 

length L < N 

contig size list L = (8,8,4, 3, 3, 2, 2, 2 ) = 32

we have 50% of total length (16/32) above 4 -> N50 is equal to 8

8 8 4 3 3 2 2 2

N50 = 8
Average : 32/8 = 4

Mediane = 3

8 4 3 3 2 2 2 2 2 2 2

N50 = 3

8

Average : 32/11 = 2.9
Mediane = 2

much more difficult to predict with transcriptome data 



Transcripts length histogram
Transcript lengths are not randomly distribute : 
-> We should get a known distribution shape



Transcripts length histogram
RNAseq data



Transcripts length histogram
Zebrafish tissue specific assembled transcriptomes : not so different



Practice

3 Aller sur la practice 3 Assessing 
transcriptome assembly quality du github

3.1 Getting basic Assembly metrics with the trinity
script TrinityStats.pl

3.2 Reads mapping back rate and abundance estimation 
using the trinity script align_and_estimate_abundance.pl

https://southgreenplatform.github.io/trainings/trinityTrinotate/TP-trinity/


Tools to evaluate transcriptomes

Since a reference genome is not available, the quality of 
computer-assembled contigs may be verified :

- by comparing the assembled sequences to the reads used to 
generate them (reference-free)

- by aligning the sequences of conserved gene domains found
in mRNA transcripts to transcriptomes or genomes of closely
related species (reference-based). 



Realignment metrics

The assembly is a sum-up. The realignment rate gives how much of the initial information is
inside the contigs. 
Reads mapped back to transcripts (RMBT)
• align reads against assembly generated transcripts
• compute percentage of reads mapped



Realignment metrics

Factors affecting realignment rate:

• Presence of highly expressed genes
• Contamination by building blocks (adaptors) 
• Reads quality

A typical ‘good’ assembly has ~80 % reads mapping to the assembly 
and ~80% are properly paired.

Proper pairs

Given read pair: Possible mapping contexts in the Trinity assembly are reported:

Improper pairs Left only Right only



Tools to evaluate transcriptomes

Transrate: understand your transcriptome assembly. http://hibberdlab.com/transrate

Transrate analyses a transcriptome assembly in three key ways:
• by inspecting the contig sequences
• by mapping reads to the contigs and inspecting the alignments
• by aligning the contigs against proteins or transcripts from a related species and 

inspecting the alignments
• Assemblies score
• Contigs score
• Optimised assemblies score (filter out bad contigs from an assembly, leaving

you with only the well-assembled ones)

http://hibberdlab.com/transrate


Assembly evaluation : read remapping

$TRINITY_HOME/util/align_and_estimate_abundance.pl --seqType fq
--transcripts Trinity.fasta --est_method RSEM --aln_method bowtie -
-prep_reference --trinity_mode --samples_file samples.txt --seqType
fq

$TRINITY_HOME/util/align_and_estimate_abundance.pl --seqType fq
--transcripts Trinity.fasta --est_method kallisto --prep_reference
--trinity_mode --samples_file samples.txt --seqType fq

$TRINITY_HOME/util/align_and_estimate_abundance.pl --seqType fq
--transcripts Trinity.fasta --est_method salmon --prep_reference --
trinity_mode --samples_file samples.txt --seqType fq

Alignment methods : bowtie -RSEM

Pseudo-Alignment methods : kallisto

Pseudo-Alignment methods : salmon



Realignment metrics
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Assembly evaluation : read remapping

head cond_A_rep1/abundance.tsv | column –t
Or 
head cond_A_rep1/abundance.tsv.genes | column –t

Pseudo-Alignment methods : kallisto (salmon : quant.sf ; quant.sf.genes)

target_id length eff_length est_counts tpm
TRINITY_DN144_c0_g1_i1 4833 4703.42 138 16.266 
TRINITY_DN144_c0_g2_i1 2228 2098.42 0.000103136 2.72479e-05 
TRINITY_DN179_c0_g1_i1 1524 1394.42 227 90.2502 
TRINITY_DN159_c0_g1_i1 659 529.534 7.75713 8.12123 
TRINITY_DN159_c0_g2_i1 247 119.949 0.24287 1.12251 
TRINITY_DN153_c0_g1_i1 2378 2248.42 16 3.9451 
TRINITY_DN130_c0_g1_i1 215 89.2898 776 4818.09 
TRINITY_DN130_c1_g1_i1 295 166.986 216 717.115 
TRINITY_DN106_c0_g1_i1 4442 4312.42 390 50.137

target_id length eff_length est_counts tpm
TRINITY_DN2774_c0_g1 2926.00 2796.42 31.00 6.15 
TRINITY_DN5482_c0_g1 3064.00 2934.42 344.00 64.99 
TRINITY_DN6803_c0_g1 1439.00 1309.42 1379.00 583.85 
TRINITY_DN386_c0_g2 4279.00 4149.42 3.23 0.43 
TRINITY_DN23_c0_g2 632.00 502.53 9.99 11.02 
TRINITY_DN5348_c0_g1 2091.00 1961.42 264.00 74.62 
TRINITY_DN5222_c0_g1 2416.00 2286.42 148.00 35.89 
TRINITY_DN4680_c0_g1 1420.00 1290.42 167.00 71.75 
TRINITY_DN2900_c0_g1 283.00 155.12 1.00 3.57



Expression matrix construction

$TRINITY_HOME/util/abundance_estimates_to_matrix.pl
\ --est_method kallisto --out_prefix Trinity_trans
\ --name_sample_by_basedir
\ cond_A_rep1/abundance.tsv
\ cond_A_rep2/abundance.tsv
\ cond_B_rep1/abundance.tsv
\ cond_B_rep2/abundance.tsv

Two matrices, 
- one containing the estimated counts, 
- one containing the TPM expression values that are cross-sample normalized using the 

TMM method.

TMM normalization assumes that most transcripts are not differentially expressed, and 
linearly scales the expression values of samples to better enforce this property.

A scaling normalization method for differential expression analysis of RNA-Seq data, 
Robinson and Oshlack, Genome Biology 2010.

http://www.genomebiology.com/2010/11/3/R25


Calulating Expression of genes and transcripts



Calulating Expression of genes and transcripts

Multiply-mapped Reads Confound Abundance Estimation : RSEM Count

ML abundance estimates using the 
Expectation-Maximization (EM) 
algorithm to find the most likely 
assignment of reads to transcripts



RSEM.isoforms.results

transcript_id gene_id length effective_length expected_count TPM FPKM IsoPct
comp100000_c0_seq1 comp100000_c0 340 239 13.09 2.79 3.29 100
comp10000_c0_seq1 comp10000_c0 353 252 43.44 8.84 10.43 100
comp10001_c0_seq1 comp10001_c0 569 468 48.01 5.61 6.62 100
comp10002_c0_seq1 comp10002_c0 1563 1462 197.27 7.78 9.19 93.26
comp10002_c0_seq2 comp10002_c0 1563 1462 0 0 0 0
comp10002_c0_seq3 comp10002_c0 1087 986 9.73 0.56 0.66 6.74
comp10002_c0_seq4 comp10002_c0 1087 986 0 0 0 0
comp10004_c0_seq1 comp10004_c0 661 560 105.99 10.48 12.37 100
comp100058_c0_seq1 comp100058_c0 879 778 45 3.26 3.85 100
comp10005_c0_seq1 comp10005_c0 274 173 28 7.82 9.23 100
comp10006_c0_seq1 comp10006_c0 309 208 42 10.07 11.88 100
comp10007_c0_seq1 comp10007_c0 477 376 66 9.42 11.11 100
comp100094_c0_seq1 comp100094_c0 279 178 14 3.82 4.51 100
comp10009_c0_seq1 comp10009_c0 256 155 13.77 4.2 4.96 100
comp1000_c0_seq1 comp1000_c0 292 191 20 5.15 6.08 100

Transcript name

Gene name Real length Transcripts Per Million

Length minus fragment size Fragments Per Kilobase of transcript per 
Million mapped reads

isoform percentage

(*)Because 1) each read aligning to this transcript has a probability of being generated from
background noise; 2) RSEM may filter some alignable low quality reads, the sum of expected
counts for all transcript are generally less than the total number of reads aligned.

Comptage attendu (*)



Normalized Expression Values

• Transcript-mapped read counts are 
normalized for both length of the transcript 
and total depth of sequencing.

• Reported as: Number of RNA-Seq Fragments 
Per Kilobase of transcript

per total Million fragments mapped

FPKM
RPKM (reads per kb per M) used with Single-end RNA-Seq reads
FPKM used with Paired-end RNA-Seq reads.



RPKM vs TPM

www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/ 



Transcripts per Million (TPM)

iTPM = iFPKM
FPKM
j∑

*1e6

Preferred metric for measuring expression
• Better reflects transcript concentration in the sample.
• Nicely sums to 1 million

TPM

FPKM

Linear relationship between TPM and 
FPKM values.

Both are valid metrics, but best to be consistent.



RPKM vs TPM

www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/ 



RPKM vs TPM

www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/ 



RSEM.isoforms.results and RSEM.genes.results

Transcripts

Genes



Expression

Often, most assembled transcripts are *very* lowly expressed
(How many ‘transcripts & genes’ are there really?)

20k transcripts

Cumulative
# of 

Transcripts

1.4 million Trinity  
transcript contigs

N50 ~ 500 bases

* Salamander transcriptome

-1 * minimum TPM 

Alternative to N50 ?

Sort contigs by expression value, descendingly.



• Sort contigs by expression value, descendingly.
• Compute N50 given minimum % total expression data thresholds =>  ExN50

N50=3457,
and

24K transcripts

Compute N50 Based on the Top-most Highly Expressed Transcripts (ExN50)

90% of 
expression data

Alternative to N50 : ExN50 – E90N50

#E min_expr E-N50 num_transcripts
E2 89129.251 2397 1
E3 89129.251 2397 2
E5 66030.692 2397 3
E6 66030.692 2397 4
E8 66030.692 2397 5
... ....... ...... ....

E86 9.187 3056 12309
E87 7.044 3149 14261
E88 6.136 3261 16646
E89 4.538 3351 19635
E90 3.939 3457 23471
E91 3.077 3560 28583
E92 2.208 3655 35832
E93 1.287 3706 47061
... ....... ...... ....

E97 0.235 2683 275376
E98 0.164 2163 428285
E99 0.128 1512 668589

E100 0 606 1554055



Note shift in ExN50 profiles as you assemble more and more reads.

* Candida transcriptome

Thousands of 
Reads

Millions of Reads

ExN50 Profiles for Different Trinity Assemblies
Using Different Read Depths



A Trinity alternative

BlastX of Trinity.fasta against uniprot

Script Trinity : analyze_blastPlus_topHit_coverage.pl

• There are 268 proteins that

each match a Trinity transcript

by >80% and ⇐ 90% of their

protein lengths. 

• There are 3510 proteins that

are represented by nearly full-

length transcripts, having >80% 

alignment coverage. 

• There are 3242 proteins that

are covered by more than 90% 

of their protein lengths.



CEGMA analysis

Core Eukaryotic Genes Mapping Approach : http://www.iplantcollaborative.org

Mapping a set of conserved protein families that occur in a wide range of eukaryotes onto 
assembly to assess completeness .
A set of eukaryotic core proteins (KOG = euKaryotic Orthologous Groups) from 6 species: 
H. sapiens, D. melanogaster, C. elegans, A. thaliana, S. cerevisiae, S.pombe

Genis Parra, Keith Bradnam and Ian Korf. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. » . Bioinformatics, 23: 1061-1067 (2007)
Genis Parra, Keith Bradnam, Zemin Ning, Thomas Keane, and Ian Korf. Assessing the gene space in draft genomes » . Nucleic Acids Research, 37(1): 298-297 (2009)

First set of 458 core genes

First set of 248 core
genes with less paralogs



CEGMA analysis : Output example (output.completeness_report)

- Complete (70% of the protein length) 
- Partial (not matching “complete” criteria but exceed a pre-
computed alignment score)



BUSCO analysis

CEGMA (http://korflab.ucdavis.edu/datasets/cegma/)

HMM:s for 248 core eukaryotic genes aligned to your assembly to assess completeness of 

gene space
“complete”: 70% aligned

“partial”: 30% aligned

BUSCO(http://busco.ezlab.org/)

Assessing genome assembly and annotation completeness with Benchmarking Universal 

Single-Copy Orthologs

http://korflab.ucdavis.edu/datasets/cegma/
http://busco.ezlab.org/


BUSCO analysis

# Bacteria
bacteria
proteobacteria
rhizobiales
betaproteobacteria
gammaproteobacteria
enterobacteriales
deltaepsilonsub
actinobacteria
cyanobacteria
firmicutes
clostridia
lactobacillales
bacillales
bacteroidetes
spirochaetes
tenericutes

# Eukaryota
eukaryota (303)
fungi (290)
microsporidia
dikarya
ascomycota
pezizomycotina
eurotiomycetes
sordariomyceta
saccharomyceta (1759)
saccharomycetales
basidiomycota
metazoa
nematoda
arthropoda
insecta
endopterygota

hymenoptera
diptera
vertebrata
actinopterygii
tetrapoda
aves
mammalia
euarchontoglires
laurasiatheria
embryophyta
protists_ensembl
alveolata_stramenophil
es_ensembl



Practice

3 Aller sur la practice 3 Assessing 
transcriptome assembly quality du github

3.2 Analysis of remapping results

3.3 Quantifying completness using BUSCO

3.4 BLASTX comparison to known protein sequences database

https://southgreenplatform.github.io/trainings/trinityTrinotate/TP-trinity/


Smith-Unna et al. Genome Research, 2016



Tools to evaluate transcriptomes

CLC SOAP de novo trans Trinity

Score -13777089814 -13270583330 -10037861970
BIC_penalty -941678.17 -2443248.59 -2106368.55
Prior_score_on_contig_lengths -746170.82 -926991.89 -7415766.35

Prior_score_on_contig_sequences -126215414.1 -201779663.6 -408041405.4

Data_likelihood_in_log_space_without_correction -13649697269 -13066158028 -9627819309
Correction_term -510717.95 -724602.05 -7520878.54
Number_of_contigs 98684 256044 220740

Expected_number_of_aligned_reads_given_the_data 121502964.5 127676508.9 157057277.9
Number_of_contigs_smaller_than_expected_read/fragm
ent_length 0 147623 0
Number_of_contigs_with_no_read_aligned_to 74 530 31212

Maximum_data_likelihood_in_log_space -13644505579 -12932075677 -9620152715
Number_of_alignable_reads 122079646 129886064 157696259
Number_of_alignments_in_total 123076291 179395943 448982192
Transcript_length_distribution_related_factors -479292.41 -506592.48 -881127.96

Detonate: Li, B et al. Evaluation of de novo transcriptome assemblies from RNA-
Seq data. Genome Biology 2014, 15:553

A methodology and corresponding software package for evaluating de novo 
transcriptome assemblies, which can compute both reference-free and reference-based
measures. DETONATE consists of two component packages, RSEM-EVAL and REF-EVAL



RNA Quast

Publications
Bushmanova E., Antipov D., Lapidus A., Suvorov V., Prjibelski A. rnaQUAST: a quality 

assessment tool for de novo transcriptome assemblies. Bioinformatics, 2016

tblastn, HMMER and transeq.

GeneMarkS-T

STAR aligner (or alternatively TopHat)

BUSCO v1.1b1

http://bioinformatics.oxfordjournals.org/content/early/2016/04/23/bioinformatics.btw218.abstract
http://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
http://hmmer.janelia.org/
ftp://emboss.open-bio.org/pub/EMBOSS/
http://topaz.gatech.edu/GeneMark/
https://code.google.com/archive/p/rna-star/
https://ccb.jhu.edu/software/tophat/index.shtml
http://busco.ezlab.org/


CLEANING THE ASSEMBLY
Transcriptome assembly

AGCCCGTTGTTGGT



Cleaning the assembly

• cleaning polyA tails, terminal N blocks, low complexity areas 
• insertion/deletion correction using the alignment
• cis or trans-chimera detection
• low fold coverage filtering (graph data)
• low expression filtering
• possible filtering of contigs which do not have a long enough ORF (phylogenomy) 

Transcripts Proteins



Transcriptome cleaning

• Remove remaining polyA tails
• Remove blocks of Ns located

at the extremities
• Remove low complexity areas

Seqclean: a script for automated trimming and 
validation of ESTs or other DNA sequences by 
screening for various contaminants, low quality and 
low-complexity sequences.

- Going back to alignment reads vs transcripts to find
INDEL 
- Using a proteic reference to find frame-shifts

• Finding frame-shifts :
• Insertion/deletion

correction 

• Detect splice form

- Going back to alignment reads vs transcripts to find
splice
- Isoforms alignments + reads
- Alignment against « close » reference genome



Transcriptome cleaning : Chimera

Yang, Y., & Smith, S. A. (2013). Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. BMC Genomics, 14(1), 328. 

Majority of trans-self chimeras for small-middle k-mers
Majority of cis-self chimeras for large k-mers and oases merge
Chimeras increase with merging and small kmer

Without reference, cannot
tackle multi-gene chimeras
Blast against itself EBARD de novo



ChimPipe



ChimeRScope

A novel alignment-free algorithm for fusion 
transcript prediction using paired-end RNA-
Seq data

Li Y, Heavican TB, Vellichirammal NN, Iqbal J, Guda C. (2017) ChimeRScope: a novel alignment-free 
algorithm for fusion transcript prediction using paired-end RNA-Seq data. Nucleic Acids Res.

https://galaxy.unmc.edu/



Transcriptome redundancy 

• Lots of transcripts is the rule rather than the exception.

• Most of the transcripts are very lowly expressed.

• The deeper you sequence and the more complex your
genome, the larger the number of lowly expressed
transcripts you will be able to assemble. 

Trinity is often criticized for his verbosity

• Trinity transcripts are not scaffolded across sequencing gaps : smaller transcript fragments 
may lack enough properly-paired read support to show up as expressed, but are still 
otherwise supported by the read data.

• Biological relevance of the lowly expressed transcripts could be questionable - some are 
bound to be very relevant.



Transcriptome cleaning : Redondancy

• Consider results at genes level

• Filtering base upon expression and % isoforms

«- retaining only those that represent at least 1% of the per-component (IsoPct) 
expression level.  : filter artifacts and lowly expressed transcripts

- Therefore, filter cautiously and we don’t recommend discarding such lowly expressed (or 
seemingly unexpressed) transcripts, but rather putting them aside for further study »

• CDHIT-EST + TGICL : 
cd-hit-est -o cdhit -c 0.98 -i Trinity.fasta -p 1 -d 0 -b 3 -T 10



Transcriptome cleaning : Redondancy

• Corset :
Davidson and Oshlack Genome Biology 2014 15:410 
doi:10.1186/s13059-014-0410-6

• DRAP : De novo RNA-seq Assembly Pipeline :
Cabau C, et al. PeerJ 5:e2988 (2017). Compacting and correcting Trinity and Oases 
RNA-Seq de novo assemblies.
- See example :



Context

Pekin : Canard de Pékin Muscovy : Canard musqué

�

�

Mulard overfeed:

Production of foie gras +++ 

TG secretion, peripheral fattening +

�

�

Hinny overfeed :

Production of foie gras -

TG secretion, peripheral fattening +++

Anas platyrhynchos

2 very close species and 2 sort of mating species : but only one describe genome 

Cairina moschata

Genome sequence of the duck
(Anas platyrhynchos).
An et al. . GigaScience Database. 
2014
http://dx.doi.org/10.5524/101001

“Foie gras” production 
Mulard > Hinny
Muscovy > Pekin

http://dx.doi.org/10.5524/101001


Objectives

Compare gene expressions in duck livers
• Of these four genotypes, 
• Fed ad libitum or force-fed
In order to understand the phenotypic differences

A first analyse was perfom using a reference approach
Lot of reads excluded from the initial analysis

% remapping on ref. genome



Objectives

Compare gene expressions in duck livers
• Of these four genotypes, 
• Fed ad libitum or force-fed
In order to understand the phenotypic differences

A first analyse was perfom using a reference approach
Lot of reads excluded from the initial analysis

A second analysis performed using a full de novo approach.

How to create an hydrid transcriptome from 4 differents genotypes ?

% remapping on ref. genome



DRAP : De novo RNA-Seq Assembly 
Pipeline

Compacting and correcting Trinity and Oases RNA-Seq de novo 
assemblies. Cabau et al. 2017 DOI  - 10.7717/peerj.2988

Step1  in runDRAP workflow.
This workflow is used to produce an assembly from one 
sample/tissue/development stage. It take as input R1 from
single-end sequencing or R1 and R2 from paired-end 
sequencing and eventually a reference proteins set from
closest species with known proteins.



DRAP : De novo RNA-Seq Assembly 
Pipeline

Step 2  in runMeta
workflow.
This workflow is used to 
produce a merged
assembly from several
samples/tissues/developm
ent stage outputted by 
runDRAP. Inputs are 
runDRAP output folders
and eventually a reference
protein set.



DRAP : De novo RNA-Seq Assembly 
Pipeline

Steps 3 in runAssessment workflow.
This workflow is used to evaluate quality for one 
assembly or for compare several assemblies
produced from the same dataset. Inputs are the 
assembly/ies, R1 and eventually R2, and a 
reference protein set



Anas_platyrhynchos.
BGI_duck_1.0.cdna.all.fa

DRAP_ApCmHiMu
transcripts_fpkm_1.fa

Completeness: transcriptome de novo is better than reference
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Higher remmaping rate on the hybrid de novo transcriptome

Anas_platyrhynchos.
cufflink.merge.fasta



DEG analysis comparison

Transcriptome de novo DEG Pekin Muscovy Mule Hinny common
edgeR up-regulated 2281 3450 4907 3901 539

down-
regulated 1468 2717 4013 3795 364
all 3749 6167 8920 7696 906

Mapping ref genome Ap DEG Pekin Muscovy Mule Hinny common
edgeR up-regulated 1553 1371 1592 1314 520

down-
regulated 680 773 953 924 235

all 2233 2144 2545 2238 758

There is a slight increase of DEG in the reference specie (+68%) and especially large 
increases in the others (+188 %, +250%, +244%). 

Mapping agaisnt genome is quite relevant in homologue to identify the DEG, but 
definitly not heterologous species


