

RNA Seq analysis

Assembly quality assesment

ABiMS – Station Biologique Roscoff

RNA Seq analysis

Transcriptome assembly

ASSEMBLY QUALITY ASSESSMENT AND CLEANNING

De novo Transcriptome Assembly is Prone to Certain Types of

Errors

Station Biologique Roscoff

Smith-Unna et al. Genome Research, 2016

• Assembly metrics

 Contigs length histogram and proteome comparison

• Reads mapping back rate

The possible metrics derived from genome assembly:

- Idea of global size (# bases)
- Idea of number of elements (#contigs/scaffolds)
- Idea of compactness (N50):

- The number of contigs in the assembly
- The size of the smallest contig
- The size of the largest contig
- The number of bases included in the assembly
- The mean length of the contigs
- The number of contigs <200 bases
- The number of contigs >1,000 bases
- The number of contigs >10,000 bases
- The number of contigs that had an open reading frame
- The mean % of the contig covered by the ORF

- NX (e.G. N50): the largest contig size at which at least X% of bases are contained in contigs at least this length
- % Of bases that are G or C
- Gc skew
- At skew
- The number of bases that are N
- The proportion of bases that are N
- The total linguistic complexity of the assembly

 N50: given a set of contigs of varying lengths, the N50 length is defined as the length N for which 50% of all bases in the contigs are in contigs of length L < N

contig size list L = (8,8,4, 3, 3, 2, 2, 2) = 32

we have 50% of total length (16/32) above 4 -> N50 is equal to 8

much more difficult to predict with transcriptome data

Transcripts length histogram

Transcript lengths are not randomly distribute : -> We should get a known distribution shape

Transcripts length histogram

RNAseq data

Zebrafish tissue specific assembled transcriptomes : not so different

Aller sur la practice 3 Assessing .transcriptome.assembly.quality...du...github.

3.1 Getting basic Assembly metrics with the trinity script TrinityStats.pl

3.2 Reads mapping back rate and abundance estimation using the trinity script align and estimate abundance.pl

Since a reference genome is not available, the quality of computer-assembled contigs may be verified :

- by comparing the assembled sequences to the reads used to generate them (reference-free)
- by aligning the sequences of conserved gene domains found in mRNA transcripts to transcriptomes or genomes of closely related species (reference-based).

Realignment metrics

The assembly is a sum-up. The realignment rate gives how much of the initial information is inside the contigs.

Reads mapped back to transcripts (RMBT)

- align reads against assembly generated transcripts
- compute percentage of reads mapped

Realignment metrics

Factors affecting realignment rate:

- Presence of highly expressed genes
- Contamination by building blocks (adaptors)
- Reads quality

A typical 'good' assembly has ~80 % reads mapping to the assembly and ~80% are properly paired.

Given read pair:

Possible mapping contexts in the Trinity assembly are reported:

Transrate: understand your transcriptome assembly. <u>http://hibberdlab.com/transrate</u>

Transrate analyses a transcriptome assembly in three key ways:

- by inspecting the contig sequences
- by mapping reads to the contigs and inspecting the alignments
- by aligning the contigs against proteins or transcripts from a related species and inspecting the alignments
 - Assemblies score
 - Contigs score
 - Optimised assemblies score (filter out bad contigs from an assembly, leaving you with only the well-assembled ones)

Alignment methods : bowtie -RSEM

\$TRINITY_HOME/util/align_and_estimate_abundance.pl --seqType fq --transcripts Trinity.fasta --est_method RSEM --aln_method bowtie --prep_reference --trinity_mode --samples_file samples.txt --seqType fq

Pseudo-Alignment methods : kallisto

\$TRINITY_HOME/util/align_and_estimate_abundance.pl --seqType fq --transcripts Trinity.fasta --est_method kallisto --prep_reference --trinity_mode --samples_file samples.txt --seqType fq

Pseudo-Alignment methods : salmon

\$TRINITY_HOME/util/align_and_estimate_abundance.pl --seqType fq --transcripts Trinity.fasta --est_method salmon --prep_reference -trinity_mode --samples_file samples.txt --seqType fq

Realignment metrics

Pseudo-Alignment methods : kallisto (salmon : quant.sf ; quant.sf.genes)

head cond_A_rep1/abundance.tsv column —t Or head cond_A_rep1/abundance.tsv.genes column —t						
target id	length	eff length	est counts	tom		
TRINITY DN144 c0 g1 i1	4833	4703.42	138	16.266		
TRINITY DN144 c0 g2 i1	2228	2098.42	0.000103136	2.72479e-05		
TRINITY DN179 c0 g1 i1	1524	1394.42	227	90.2502		
TRINITY DN159 c0 g1 i1	659	529.534	7.75713	8.12123		
TRINITY DN159 c0 g2 i1	247	119.949	0.24287	1.12251		
TRINITY_DN153_c0_g1_i1	2378	2248.42	16	3.9451		
TRINITY_DN130_c0_g1_i1	215	89.2898	776	4818.09		
TRINITY_DN130_c1_g1_i1	295	166.986	216	717.115		
TRINITY_DN106_c0_g1_i1	4442	4312.42	390	50.137		
target id	length	eff length	est counts	+ D m		
$\frac{1}{2} \frac{1}{2} \frac{1}$	2926 00	2796 42	31 00	6 15		
TRINITY DN5482 c0 g1	3064.00	2934.42	344.00	64,99		
TRINITY DN6803 c0 $g1$	1439.00	1309.42	1379.00	583.85		
TRINITY DN386 c0 $q2$	4279.00	4149.42	3.23	0.43		
TRINITY DN23 c0 q2	632.00	502.53	9.99	11.02		
TRINITY DN5348 c0 g1	2091.00	1961.42	264.00	74.62		
TRINITY_DN5222_c0_g1	2416.00	2286.42	148.00	35.89		
$\frac{1}{10000000000000000000000000000000000$	1420.00	1290.42	167.00	71.75		
TRINITY DN2900 c0 g1	283.00	155.12	1.00	3.57		

\$TRINITY_HOME/util/abundance_estimates_to_matrix.pl
\ --est_method kallisto --out_prefix Trinity_trans
\ --name_sample_by_basedir
\ cond_A_rep1/abundance.tsv
\ cond_B_rep1/abundance.tsv
\ cond_B_rep1/abundance.tsv
\ cond_B_rep2/abundance.tsv

Two matrices,

- one containing the estimated counts,
- one containing the TPM expression values that are cross-sample normalized using the TMM method.

TMM normalization assumes that most transcripts are not differentially expressed, and linearly scales the expression values of samples to better enforce this property.

A scaling normalization method for differential expression analysis of RNA-Seq data, Robinson and Oshlack, Genome Biology 2010.

Calulating Expression of genes and transcripts

Station Biologique Roscoff

1

Calulating Expression of genes and transcripts

Multiply-mapped Reads Confound Abundance Estimation : RSEM Count

Blue = multiply-mapped reads Red, Yellow = uniquely-mapped reads ML abundance estimates using the Expectation-Maximization (EM) algorithm to find the most likely assignment of reads to transcripts

RSEM.isoforms.results

Station Biologique Roscoff

(*)Because 1) each read aligning to this transcript has a probability of being generated from background noise; 2) RSEM may filter some alignable low quality reads, the sum of expected counts for all transcript are generally less than the total number of reads aligned.

• Transcript-mapped read counts are normalized for both length of the transcript and total depth of sequencing.

Reported as: Number of RNA-Seq Fragments
 Per Kilobase of transcript
 per total Million fragments mapped
 FPKM

RPKM (reads per kb per M) used with Single-end RNA-Seq reads FPKM used with Paired-end RNA-Seq reads.

RPKM vs TPM

RPKM

www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/

$TPM_{i} = \frac{FPKM_{i}}{\sum_{j} FPKM} *1e6$

Preferred metric for measuring expression

- Better reflects transcript concentration in the sample.
- Nicely sums to 1 million

Linear relationship between TPM and FPKM values.

TPM

Both are valid metrics, but best to be consistent.

FPKM

RPKM vs TPM

RPKM

трм

www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/

RPKM vs TPM

Gene	Gene length (KB)	Rep 1 counts	Rep 2 counts	Rep 3 counts
А	2	10	12	30
В	4	20	25	60
С	1	5	8	15
D	10	0	0	1

	חכ	12	ΝИ	1
_	٦Р	1N.	IVI	

Gene	Gene length (KB)	Rep 1 RRPM	Rep 2 RRPM	Rep 3 RRPM
А	2	1.43	1.33	1.42
В	4	1.43	1.39	1.42
С	1	1.43	1.78	1.42
D	10	0.00	0.00	0.01
	SUM of RPKM	4.29	4.50	4.25

трм

Gene	Gene length (KB)	Rep 1 TPM	Rep 2 TPM	Rep 3 TPM
А	2	3.33	2.96	3.33
В	4	3.33	3.09	3.33
С	1	3.33	3.95	3.33
D	10	0.00	0.00	0.02
	SUM of TPM	10.00	10.00	10.00

www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/

RSEM.isoforms.results and RSEM.genes.results

transcript_id	gene_id	length	effective_length	expected_count	трм	FPKM	IsoPct
e128_g0_i1	c128_g0	209	1.73	0.00	0.00	0.00	0.00
e13_g0_i1	c13_g0	235	7.16	1.00	12561.51	5282.75	100.00
c22_g0_i1	c22_g0	215	2.62	0.00	0.00	0.00	0.00
e28_g0_i1	c28_g0	329	54.60	4.00	6591.85	2772.21	100.00
e33_g0_i1	c33_g0	307	40.30	3.00	6697.56	2816.66	100.00
e35_g0_i1	c35_g0	219	3-33	0.00	0.00	0.00	0.00
<35_g1_i1	c3581	204	1.19	1.00	75295-99	31665.75	100.00
c39_g0_i1	c39_go	348	68.20	1.00	1319-32	554.84	100.00
e39_g0_i2	c39_go	255	13.97	0.00	0.00	0.00	0.00
c41_g0_i1	c41_g0	592	295-77	12.00	3650.37	1535-16	100.00
c44_go_i1	c44_go	361	78.10	1.00	1151.96	484.46	100.00
c44_g1_i1	c44_g1	280	25.22	1.00	3568.05	1500.54	100.00

Transcripts

Genes

gene_id	transcript_id(s)	length	effective_length	expected_count	TPM	FPKM
c128_g0	e128_g0_i1	0.00	0.00	0.00	0.00	0.00
c13_g0	e13_g0_i1	235.00	7.16	1.00	12561.51	5282.75
c22_g0	c22_g0_i1	0.00	0.00	0.00	0.00	0.00
c28_g0	c28_go_i1	329.00	54.60	4.00	6591.85	2772.21
c33_g0	e33_go_i1	307.00	40.30	3.00	6697.56	2816.66
c35_go	e35_g0_i1	0,00	0.00	0.00	0.00	0.00
c35_g1	c35_g1_i1	204.00	1.19	1.00	75295.99	31665.75
c39_go	c39_g0_i1,c39_g0_i2	348.00	68.20	1.00	1319.32	554.84
c41_g0	c41_go_i1	592.00	295-77	12.00	3650-37	1535.16
c44_g0	c44_g0_i1	361.00	78.10	1.00	1151.96	484.46
c44_g1	c44_g1_i1	280.00	25.22	1.00	3568.05	1500.54

Often, most assembled transcripts are *very* lowly expressed (How many 'transcripts & genes' are there really?)

* Salamander transcriptome

Compute N50 Based on the Top-most Highly Expressed Transcripts (ExN50)

- Sort contigs by expression value, descendingly.
- Compute N50 given minimum % total expression data thresholds => ExN50

Station Biologique
RoscoffExN50 Profiles for Different Trinity AssembliesUsing Different Read Depths

Note shift in ExN50 profiles as you assemble more and more reads.

* Candida transcriptome

A Trinity alternative

BlastX of Trinity.fasta against uniprot Script Trinity : *analyze_blastPlus_topHit_coverage.pl*

hit_pct_cov_bin	count_in_bin	>bin_below
100	3242	3242
90	268	3510
80	186	3696
70	202	3898
60	216	4114
50	204	4318
40	164	4482
30	135	4617
20	76	4693
10	0	4693
0	0	4693

- There are 268 proteins that each match a Trinity transcript by >80% and ⇐ 90% of their protein lengths.
- There are 3510 proteins that are represented by nearly fulllength transcripts, having >80% alignment coverage.
- There are 3242 proteins that are covered by more than 90% of their protein lengths.

Core Eukaryotic Genes Mapping Approach : http://www.iplantcollaborative.org

Mapping a set of conserved protein families that occur in a wide range of eukaryotes onto assembly to assess completeness .

A set of eukaryotic core proteins (KOG = euKaryotic Orthologous Groups) from 6 species: H. sapiens, D. melanogaster, C. elegans, A. thaliana, S. cerevisiae, S.pombe

Genis Parra, Keith Bradnam and Ian Korf. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. ». Bioinformatics, 23: 1061-1067 (2007) Genis Parra, Keith Bradnam, Zemin Ning, Thomas Keane, and Ian Korf. Assessing the gene space in draft genomes ». Nucleic Acids Research, 37(1): 298-297 (2009)

- Complete (70% of the protein length)

- Partial (not matching "complete" criteria but exceed a precomputed alignment score)

#	Statis	stics of th	ne completen	ess of	the gen	ome based	I on 248 CEGs	#
		#Prots 9	Completenes	s -	#Total	Average	%Ortho	
C	omplete	245	98.79	-	593	2.42	64.90	
(Group 1	66	100.00	-	146	2.21	60.61	
	Group 2 Group 3	56 58	100.00 95.08	-	129 140	2.30	60.71 67.24	
(Group 4	65	100.00	-	178	2.74	70.77	
1	Partial	245	98.79	-	631	2.58	67.76	
(Group 1	66	100.00	-	152	2.30	62.12	
	Group 2	56	100.00	-	142	2.54	64.29	
	Sroup 3	58	100 00	-	148	2.00	75 38	
	noup 4	00	100.00		105	2.01	75.50	
#	These re	esults are	based on th	e set	of genes	selected	l by Genis Parra	#
#	Key:							#
#	Prots =	number of	248 ultra-c	onserv	/ed CEGs	present 1	In genome	#
#	Total =	total numb	oer of CEGs	preser	nt includ	ing putat	ive orthologs	#
#	Average	= average	number of o	rthold	ogs per C	EG		#
#	%Ortho =	= percentaç	ge of detect	ed CEG	S that h	ave more	than 1 ortholog	#

BUSCO analysis

CEGMA (http://korflab.ucdavis.edu/datasets/cegma/)

HMM:s for 248 core eukaryotic genes aligned to your assembly to assess completeness of

gene space "complete": 70% aligned "partial": 30% aligned

BUSCO(<u>http://busco.ezlab.org/</u>)

Assessing genome assembly and annotation completeness with <u>Benchmarking Universal</u> Single-Copy Orthologs

Datasets (Beta versions, updated sets and additional lineages coming soon)

Bacteria sets

Eukaryota sets

Protists sets

BUSCO analysis

Bacteria bacteria proteobacteria rhizobiales betaproteobacteria gammaproteobacteria enterobacteriales deltaepsilonsub actinobacteria cyanobacteria firmicutes clostridia lactobacillales bacillales bacteroidetes spirochaetes tenericutes

Eukaryota eukaryota (303) fungi **(290)** microsporidia dikarya ascomycota pezizomycotina eurotiomycetes sordariomyceta saccharomyceta (1759) saccharomycetales basidiomycota metazoa nematoda arthropoda insecta endopterygota

hymenoptera diptera vertebrata actinopterygii tetrapoda aves mammalia euarchontoglires laurasiatheria embryophyta protists ensembl alveolata_stramenophil es ensembl

3

Aller sur la practice 3 Assessing

- 3.2 Analysis of remapping results
- 3.3 Quantifying completness using BUSCO
- 3.4 BLASTX comparison to known protein sequences database

Smith-Unna et al. Genome Research, 2016

Detonate: Li, B et al. Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biology 2014, 15:553

A methodology and corresponding software package for evaluating de novo transcriptome assemblies, which can compute both reference-free and reference-based measures. DETONATE consists of two component packages, RSEM-EVAL and REF-EVAL

CLC SOAP de novo trans				
Score	-13777089814	-13270583330	-10037861970	
BIC_penalty	-941678.17	-2443248.59	-2106368.55	
Prior_score_on_contig_lengths	-746170.82	-926991.89	-7415766.35	
Prior_score_on_contig_sequences	-126215414.1	-201779663.6	-408041405.4	
Data_likelihood_in_log_space_without_correction	-13649697269	-13066158028	-9627819309	
Correction_term	-510717.95	-724602.05	-7520878.54	
Number_of_contigs	98684	256044	220740	
Expected_number_of_aligned_reads_given_the_data	121502964.5	127676508.9	157057277.9	
Number_of_contigs_smaller_than_expected_read/fragm				
ent_length	0	147623	0	
Number_of_contigs_with_no_read_aligned_to	74	530	31212	
Maximum_data_likelihood_in_log_space	-13644505579	-12932075677	-9620152715	
Number_of_alignable_reads	122079646	129886064	157696259	
Number_of_alignments_in_total	123076291	179395943	448982192	
Transcript_length_distribution_related_factors	-479292.41	-506592.48	-881127.96	

Publications

Bushmanova E., Antipov D., Lapidus A., Suvorov V., Prjibelski A. <u>rnaQUAST: a quality</u> assessment tool for de novo transcriptome assemblies. *Bioinformatics*, 2016

<u>tblastn</u>, <u>HMMER</u> and <u>transeq</u>. <u>GeneMarkS-T</u> <u>STAR</u> aligner (or alternatively <u>TopHat</u>) <u>BUSCO v1.1b1</u>

Transcriptome assembly

CLEANING THE ASSEMBLY

Cleaning the assembly

- cleaning polyA tails, terminal N blocks, low complexity areas
- insertion/deletion correction using the alignment
- cis or trans-chimera detection
- low fold coverage filtering (graph data)
- low expression filtering

Station Biologique

Roscoff

possible filtering of contigs which do not have a long enough ORF (phylogenomy)

Transcriptome cleaning

- Remove remaining polyA tails
- Remove blocks of Ns located at the extremities

• Remove low complexity areas

Seqclean: a script for automated trimming and validation of ESTs or other DNA sequences by screening for various contaminants, low quality and low-complexity sequences.

- Finding frame-shifts :
- Insertion/deletion correction

- Going back to alignment reads vs transcripts to find INDEL
- Using a proteic reference to find frame-shifts

• Detect splice form

- Going back to alignment reads vs transcripts to find splice
- Isoforms alignments + reads
- Alignment against « close » reference genome

Transcriptome cleaning : Chimera

Majority of trans-self chimeras for small-middle k-mers Majority of cis-self chimeras for large k-mers and oases merge Chimeras increase with merging and small kmer

Station Biologique

Roscoff

Without reference, cannot tackle multi-gene chimeras Blast against itself EBARD de novo

Cancer Gene Profiling pp 239-253 | Cite as

Transcriptome Sequencing for the Detection of Chimeric Transcripts

а

ChimeRScope

https://galaxy.unmc.edu/

A novel alignment-free algorithm for fusion transcript prediction using paired-end RNA-Seq data

- Galaxy	Avalue Data Workflow Daned Data - Visalization Hele- Date		Using 0 bytes
rools ± search tools O	ChineRScope_Scanner Identifies Fusion Event Supporting Reads FESR among discondant reads (Galaxy Tool	History search datasets	2 0 0
At Data Biter and Serti SGS. Chinnel Scooper repository Chinnel Scooper Scapper (Meentless FESK among discondant reads Chinnel Scooper Scapper (Meentless FESK from previous sterp Chinnel Scooper Fuxming: Alignment module for select fusion genes	RM-See FASTQ Nis, control by read name Image: See FASTQ Nis, sorted Nishary or own from your Nistory Ube a built-in kmer library Image: See FASTQ Nis, sorted Nishary or own from your Nistory Image: See FASTQ Nis, sorted Nishary or own from your Nistory Image: See FASTQ Nis, sorted Nishary Image: See FASTQ Nis, sorted Nishary Image: See FASTQ Nis, sorted Nishary Image: See of & used If If Image: Nishary The subse of the closen k-mer library The distance of allowed overlag, suggested value is d=k-5 If Image: Nishary Nishary, State Nishary The distance of allowed overlag, suggested value is d=k-5 If Please refer to ChimetRScope paper or o	Uncumed Nistery 0 b O The history is en lead system and system from an contenal	npry, You can da or get dita Abatta

Li Y, Heavican TB, Vellichirammal NN, Iqbal J, Guda C. (2017) **ChimeRScope: a novel alignment-free algorithm for fusion transcript prediction using paired-end RNA-Seq data.** *Nucleic Acids Res*.

Transcriptome redundancy

Trinity is often criticized for his verbosity

- *Lots* of transcripts is the rule rather than the exception.
- Most of the transcripts are very lowly expressed.
- The deeper you sequence and the more complex your genome, the larger the number of lowly expressed transcripts you will be able to assemble.
- Trinity transcripts are not scaffolded across sequencing gaps : smaller transcript fragments may lack enough properly-paired read support to show up as expressed, but are still otherwise supported by the read data.
- Biological relevance of the lowly expressed transcripts could be questionable some are bound to be very relevant.

Transcriptome cleaning : Redondancy

- Consider results at genes level
- Filtering base upon expression and % isoforms

«- *retaining only those that represent at least 1% of the per-component* (*IsoPct*) *expression level.* : *filter artifacts and lowly expressed transcripts*

- Therefore, *filter cautiously* and we don't recommend discarding such lowly expressed (or seemingly unexpressed) transcripts, but rather putting them aside for further study »

• CDHIT-EST + TGICL : cd-hit-est -o cdhit -c 0.98 -i Trinity.fasta -p 1 -d 0 -b 3 -T 10

Transcriptome cleaning : Redondancy

• DRAP : **D**e novo **R**NA-seq **A**ssembly **P**ipeline :

Cabau C, et al. PeerJ 5:e2988 (2017). Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies.

- See example :

TG secretion, peripheral fattening +++

"Foie gras" production Mulard > Hinny Muscovy > Pekin

2 very close species and 2 sort of mating species : but only one describe genome

Station Biologique Roscoff Objectives

Compare gene expressions in duck livers

- Of these four genotypes,
- Fed *ad libitum* or force-fed

In order to understand the phenotypic differences

A first analyse was perfom using a reference approach Lot of reads excluded from the initial analysis

% remapping on ref. genome

Objectives

tation Biologique

Compare gene expressions in duck livers

- Of these four genotypes,
- Fed *ad libitum* or force-fed

In order to understand the phenotypic differences

% remapping on ref. genome

A first analyse was perfom using a reference approach Lot of reads excluded from the initial analysis

A second analysis performed using a full *de novo* approach.

How to create an hydrid transcriptome from 4 differents genotypes ?

DRAP : **D**e novo **R**NA-Seq **A**ssembly Station Biologique

Pipeline

Roscoff

Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies. Cabau et al. 2017 DOI - 10.7717/peerj.2988

Step1 in runDRAP workflow.

This workflow is used to produce an assembly from one sample/tissue/development stage. It take as input R1 from single-end sequencing or R1 and R2 from paired-end sequencing and eventually a reference proteins set from closest species with known proteins.

DRAP : **D**e novo **R**NA-Seq **A**ssembly Station Biologique

MMS Pipeline

Roscoff

Step 2 in runMeta workflow.

This workflow is used to produce a merged assembly from several samples/tissues/developm ent stage outputted by runDRAP. Inputs are runDRAP output folders and eventually a reference protein set.

DRAP : De novo RNA-Seq Assembly Station Biologique

DMS Pipeline

Roscoff

Steps 3 in runAssessment workflow. This workflow is used to evaluate quality for one assembly or for compare several assemblies produced from the same dataset. Inputs are the assembly/ies, R1 and eventually R2, and a reference protein set

<u>Anas_platyrhynchos.</u> <u>BGI_duck_1.0.cdna.all.fa</u>

<u>Anas_platyrhynchos.</u> <u>cufflink.merge.fasta</u>

DRAP_ApCmHiMu transcripts_fpkm_1.fa

C182.	MISTEL 26.0:1.26.0.21.06.00.20.00.001	Results:	C-107-104	15 (NJ. 25.2-10.05). F13.05.01-0.25.01303
		C:81.5%[S:42.9%,D:38.6%],F:11.2%,M:7.3%,n:3		
255	Complete SUSCOs (C)	247 Complete BUSCOs (C)	264	Complete MINCON 105
245	Complete and single-copy BUSCEs (S)	130 Complete and single-copy BUSCOs (S)	1.7%	Complete and single-copy BUSCDs (5)
	Complete and deplacated BUSCON 100	117 Complete and duplicated BUSCOs (D)	115	Complete and duplicated BUSCON (11)
34	Fragmented BUSCOs (F)	34 Fragmented BUSCOs (F)	19	Fragmented BUSCON (F)
22	Mixwing BUSCON DRI	22 Missing BUSCOs (M)		Missing BUSCOL (M)
3403	Total BUSCO groups searched	303 Total BUSCO groups searched	340	Total 90500 groups searched

Completeness: transcriptome de novo is better than reference

Higher remmaping rate on the hybrid de novo transcriptome

Station Biologique Roscoff

Transcriptome de novo	DEG	Pekin	Muscovy	Mule	Hinny	common
edgeR	up-regulated	2281	3450	4907	3901	539
	down- regulated	1468	2717	4013	3795	364
	all	3749	6167	8920	7696	906
Mapping ref genome Ap	DEG	Pekin	Muscovy	Mule	Hinny	common
Mapping ref genome Ap edgeR	DEG up-regulated	Pekin 1553	Muscovy 1371	Mule 1592	Hinny 1314	common 520
Mapping ref genome Ap edgeR	DEG up-regulated down- regulated	Pekin 1553 680	Muscovy 1371 773	Mule 1592 953	Hinny 1314 924	common 520 235
Mapping ref genome Ap edgeR	DEG up-regulated down- regulated all	Pekin 1553 680 2233	Muscovy 1371 773 2144	Mule 1592 953 2545	Hinny 1314 924 2238	common 520 235 758

There is a slight increase of DEG in the reference specie (+68%) and especially large increases in the others (+188 %, +250%, +244%).

Mapping agaisnt genome is quite relevant in homologue to identify the DEG, but definitly not heterologous species