
1

Sequencing technologies

Principal technologies:

PacBio
Reads size: 30 kb
Total seq: 20Gb
https://www.pacb.com/products-and-services/sequel-system/

Illumina
Reads size: 2*150
Reads nb: ~6*109-20*109

Total seq: 600Gb
https://emea.illumina.com/systems/sequencing-platforms.html

Oxford nanopore
Reads size: 30 kb
Total seq: 15Tb
https://nanoporetech.com/products/promethion

454 Life Sciences/Roche
Reads size: 0.5-1kb
Reads nb: ~106
Total seq: 0.7 Gb
https://en.wikipedia.org/wiki/DNA_sequencer

https://www.pacb.com/products-and-services/sequel-system/
https://www.pacb.com/products-and-services/sequel-system/
https://www.pacb.com/products-and-services/sequel-system/
https://www.pacb.com/products-and-services/sequel-system/
https://www.pacb.com/products-and-services/sequel-system/
https://www.pacb.com/products-and-services/sequel-system/
https://www.pacb.com/products-and-services/sequel-system/
https://www.pacb.com/products-and-services/sequel-system/
https://emea.illumina.com/systems/sequencing-platforms.html
https://emea.illumina.com/systems/sequencing-platforms.html
https://emea.illumina.com/systems/sequencing-platforms.html
https://emea.illumina.com/systems/sequencing-platforms.html
https://nanoporetech.com/products/promethion
https://nanoporetech.com/products/promethion
https://en.wikipedia.org/wiki/DNA_sequencer
https://en.wikipedia.org/wiki/DNA_sequencer

From the output of sequencing to the variant calling file

Principles types of sequencing:

• Whole Genome Sequencing (WGS): All the genome is “uniformly” sampled (some biases
exist depending to sequencing technologies).

• messenger RNA sequencing (RNAseq): mRNA are sequenced after a step of cDNA
complementation

• Genotyping By Sequencing (GBS): The genome is sampled and only part of it is
sequenced.

Coverage

Coverage

Coverage

chromosome1

chromosome1

chromosome1

2

Standard workflow:

From the output of sequencing to the variant calling file

Sequences obtained from the
sequencer = reads. (generally short:
100-250 bases

Alignment against a reference sequence

Polymorphism identification

Raw alignment
reference

Post alignment processing steps

reference
Cured alignment

ATGCATTGGACTGGTGTCCACTGACTTTGCAACTCCAAGGTTCCGTACT reference
ATGCATTGGACAGGTGTCCAC ACTTTGCAACTCCAAGCTTCCGTA
 ATTGGACAGGTGTCCACTGAC TGCAACTCCAAGGTTCCGTACT
 ACAGGTGTCCACTGACTTTGCAAC AAGCTTCCGTACTGTACCT

Variant calling

CHROM POS Genotype
chr01 12 A/A
chr01 40 C/G 3

From the output of sequencing to the variant calling file

Depending on the sequencing technologies: steps from the sequencing data to the
variant calling format are distinct

• RNAseq: Aligner should take into account mRNA splicing.

• PCR duplicates are usually removed because they biased
allelic ratio. It is not possible for GBS du to the approach…
(see latter)

• RNAseq: Read overlapping splicing sites should be split.

4

From the output of sequencing to the variant calling file

Depending on the sequencing technologies: steps from the sequencing data to the
variant calling format are distinct

• RNAseq: Aligner should take into account mRNA splicing.

• PCR duplicates are usually removed because they biased
allelic ratio. It is not possible for GBS du to the approach…
(see latter)

• RNAseq: Read overlapping splicing sites should be split.

Several workflow exists:
• TOGGLe: https://github.com/SouthGreenPlatform/TOGGLE

• GATK best practice: https://software.broadinstitute.org/gatk/best-practices/

• VcfHunter: https://github.com/SouthGreenPlatform/VcfHunter

5

https://github.com/SouthGreenPlatform/TOGGLE
https://github.com/SouthGreenPlatform/TOGGLE
https://github.com/SouthGreenPlatform/TOGGLE
https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
https://github.com/SouthGreenPlatform/VcfHunter
https://github.com/SouthGreenPlatform/VcfHunter

From the output of sequencing to the variant calling file

VcfHunter detailed workflow (Developped under GenomeHarvest) for WGS and GBS:

Possible but not recommended:
• High computation time
• Result not so good

For WGS only

6

The Genotyping By Sequencing in detail

• Principle: sequencing a constant part of the genome in several accessions

• Why?
 The amount of reads obtained per sequencing run is constant
 Necessity to have enough coverage to have a confident genotype calling
 Several accessions can be sequenced in one run

Sequencing a sample of the genome which is a constant part allow to
sequence more accessions in a run and to keep the same coverage

reference

WGS 54 reads
~ 3x

reference

GBS 54 reads
~ 9x

reference

GBS 54 reads
~ 3x/accessions

7

< 500 bp
Restriction site mutation

Sample 1

Sample 2

Tag Restriction site > 500 bp

X

The Genotyping By Sequencing in detail

• Cutting the genome with restriction enzymes
• Selection of “short” fragments (<500)
• Sequencing of extremities of selected fragments
• Relative constant sampling of regions in distinct samples (exception if mutation in

restriction sites)
• Single or combination of restriction enzyme(s)

Slide adapted from Pierre Mournet

8

The Genotyping By Sequencing in detail: combination of two enzymes (pstI & mseI)

5’…TCCTCTTACAGGATCCTGCAGCAACAAGGGTTAAGAATTATAAGCA…3’
3’…AGGAGAATGTCCTAGGACGTCGTTGTTCCCAATTCTTAATATTCGT…5’

mseI pstI

5’-ACACTCTTTCCTACACGACGCTCTTCCGATCTXXXXTGCAGCAACAAGGGTTACAGATCGGAAGAGCGGTTCAGCAGGAATGCCGA-3’
3’-TGTGAGAAAGGGATGTGCTGCGAGAAGGTAGAYYYYACGTCGTTGTTCCCAATGTCTAGCCTTCTCGCCAACTCGTCCTTACGGCT-5’

5’-ACACTCTTTCCTACACGACGCTCTTCCGATCTXXXXTGCA TACAGATCGGAAGAGCGGTTCAGCAGGAATGCCGA-3’
3’-TGTGAGAAAGGGATGTGCTGCGAGAAGGTAGAYYYY GTCTAGCCTTCTCGCCAACTCGTCCTTACGGCT-5’

Barcode (unique to each individual)

Barcode adapter Common adapter

5’-XXXXTGCAGCAACAAGGGTTACAGATCGGAAGAGCGGTTCAGCAGGAATGCCGA-3’

Enzymatic restriction

Sequencing

5’… GCAACAAGGGT …3’
3’… ACGTCGTTGTTCCCAAT …5’

DNA insert

Ligation

5’ -> 3’ fragment selection for sequencing

5’-ACACTCTTTCCTACACGACGCTCTTCCGATCTXXXXTGCAGCAACAAGGGTTACAGATCGGAAGAGCGGTTCAGCAGGAATGCCGA-3’

Illumina Primer

9

From the output of GBS sequencing to the variant calling file: in command line

• We have generated a small GBS dataset comprising 12 samples for which pstI and mseI
enzymes have been used and a sample specific barcode have been used.

Sample2

Sample3

Sample4

Sample5

Sample6

Sample7

Sample8

Sample9

Sample10

Sample11

Sample12

Sample1

+ CCAG

+ TTGA

+ GGTA

+ ATTG

+ CGGT

+ TGCG

+ GTAT

+ AACCA

+ CCACG

+ TATAA

+ GAGCG

+ AACT

Sequenced

Unique fastq
file containing
reads from all

accessions

10

From the output of GBS sequencing to the variant calling file: in command line

• Obtaining the datasets:
1. Log onto the cluster

2. Go to your “work” directory

cd
cd work

3. Create a folder in which we will be working and go into:

mkdir vcfhunterGBS
cd vcfhunterGBS

4. Copy the folder containing the sequencing information:

cp -R /home/gmartin/WorkShop/VCFHUNTER/data/WorkShopDataset .

11

Copy
The folder and
all it contains

Location of the
folder

Copy it here
i.e

/home/Your_ID/work/vcfhunterGBS

change directory (with nothing else: it goes to your home - /home/Your_ID)

change directory to work
Double clic

make directory vcfhunterGBS

From the output of GBS sequencing to the variant calling file: in command line

• Listing the datasets:
ll WorkShopDataset

• To have a look at this file
zmore WorkShopDataset/ReadFromTheSequencer_R1.fastq.gz

• Because zmore will list the file until its end using the “enter” key, and we do not want that
because the file is big, we can “kill” the command with a combination of key:
“Ctrl” + “C”

12

1

1 A compressed file (.gz)
containing all reads from
all accessions obtained
from the sequencer

Reading line by line a zipped file (.gz) Path to the fastq file

From the output of GBS sequencing to the variant calling file: in command line

• To have a look at this file
• zmore WorkShopDataset/ReadFromTheSequencer_R1.fastq.gz

13

Separator

Read nucleotides
sequence

Read nucleotides
quality

Read name

Fatsq format (for each read)

Read2

Read1

Base quality encoding: for base “C” = A
But what does “A” mean?

• Each letter has informatically a numeric value. For example “A” is equal to 65
• We should remove 33 to this value and thus “A” = 65-33 = 32!

 !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJ
 | | | |
 33 59 64 73
 0.2......................26...31........41

From the output of GBS sequencing to the variant calling file: in command line

• To have a look at this file
• zmore WorkShopDataset/ReadFromTheSequencer_R1.fastq.gz

14

pstI restriction site

Sample8 tag
 Read from sample8

Sample11 tag
 Read from sample11

Sample2 tag
 Read from sample2

mseI restriction site
Adapter sequence

From the output of GBS sequencing to the variant calling file: in command line

• Listing the datasets:
ll WorkShopDataset

• To have a look at this file
more WorkShopDataset/DemultiplexingFile.tab

15

1

1 A compressed file (.gz)
containing all reads from
all accessions obtained
from the sequencer

Reading line by line a file Path to the file

2 2 A file that will be used to
separate reads in distinct
file according to the
accession they belong

16

From the output of GBS sequencing to the variant calling file: in command line

• To have a look at this file
more WorkShopDataset/DemultiplexingFile.tab

Sample
name

Sample
tag

Restriction
enzyme1

Restriction
enzyme2

17

From the output of GBS sequencing to the variant calling file: in command line

• Now it is time to demultiplex! i.e. parse reads in files corresponding to sample.

• For that we will use GBSX (https://github.com/GenomicsCoreLeuven/GBSX, https://doi.org/10.1186/s12859-015-0514-3)

• A small parenthesis: On the AGAP cluster, several modules are already available. To access
the list of available modules, use the following command line:

module avail

A list of modules appears and we can find “GBSX” program in this list!

 Two versions are available! We will take the 1.2 version

https://github.com/GenomicsCoreLeuven/GBSX
https://github.com/GenomicsCoreLeuven/GBSX
https://doi.org/10.1186/s12859-015-0514-3
https://doi.org/10.1186/s12859-015-0514-3
https://doi.org/10.1186/s12859-015-0514-3
https://doi.org/10.1186/s12859-015-0514-3
https://doi.org/10.1186/s12859-015-0514-3
https://doi.org/10.1186/s12859-015-0514-3
https://doi.org/10.1186/s12859-015-0514-3

From the output of GBS sequencing to the variant calling file: in command line

• To load this module run the command line:

module load bioinfo/GBSX/1.2

• The module is now loaded. This can be verified by listing the loaded modules with de
following command line:

module list

The GBSX module is loaded. But what you don’t know, is that GBSX need another program
to be used! This program is JAVA. To load java we will run the command line:

module load system/java/jre8

You can try again module list to verify that java has been loaded

18

From the output of GBS sequencing to the variant calling file: in command line

• At this point all is ready to demultiplex the fastq file! All we have to do is to run the following
command line (in one single line):

qsub -q normal.q -l mem_free=12G -b yes -V -N DEMULT java -XX:ParallelGCThreads=1 -Xmx8G
-jar /usr/local/bioinfo/GBSX/1.2/GBSX_v1.1.2.jar --Demultiplexer
-f1 WorkShopDataset/ReadFromTheSequencer_R1.fastq.gz
-i WorkShopDataset/DemultiplexingFile.tab -o Demultiplexed -gzip true -mb 0

• Now a little piece of explanation:
 We are working on a cluster.

 This means that we have several computers which are connected so that they can
work together.

 It also allows that several people can run huge calculation at the same time!
 It also means that there is a strict procedure to perform calculation on the cluster

and this procedure is associated to the way a cluster work:

19

Master
Computer1

Computer1

Computer2

ComputerX

…

A single computer to rule them all

From the output of GBS sequencing to the variant calling file: in command line

20

Master
Computer1

Computer1

Computer2

ComputerX

…

User command line

Result of the
command line

1

2 3
4

4

How the cluster works?

1. The user tip a command line

2. Which is sent to the master computer

3. Based on this command line, the master computer identify which computer it rules match
the command requirements and which of them are available

4. The command line is executed on the chosen computer (in this example Computer2)

5. Which returns the result of the command line

From the output of GBS sequencing to the variant calling file: in command line
• Back to the command line:
qsub -q normal.q -l mem_free=12G -b yes -V -N DEMULT “java -XX:ParallelGCThreads=1 -Xmx8G
-jar /usr/local/bioinfo/GBSX/1.2/GBSX_v1.1.2.jar --Demultiplexer
-f1 WorkShopDataset/ReadFromTheSequencer_R1.fastq.gz
-i WorkShopDataset/DemultiplexingFile.tab -o Demultiplexed -gzip true -mb 0”

• The first part of the command line (in bold) is used by the master computer:
 qsub: Means that we will send a command that the master computer needs to analyze to choose

the best computer
 -q normal.q: tells the master computer that we will use computer from normal queue. Several

queues exist depending on computation requirement:
 normal.q: access to computers of 48 processors with 192Go shared memory (RAM) and a

command line cannot exceed 48hours of running time.
 long.q: access to computers of 48 processors with 192Go shared memory but there is not

running time limit
 bigmem.q: access to a unique computer of 96 processors with 2,6To shared memory and no

time limit
 -l mem_free=12G: precise that the program will use 12G of RAM (so the master computer will

check that it is available on the computers). This is a facultative option but necessary when using
java program to prevent errors…

 -b yes: it is not important, but put it.
 -V: Tell the master computer to load the module previously loaded on the computer it will choose
 -N DEMULT: A name passed to the command line to look at its status (waiting, running or error) on

the cluster

21

From the output of GBS sequencing to the variant calling file: in command line
• Back to the command line:
qsub -q normal.q -l mem_free=12G -b yes -V -N DEMULT “java -XX:ParallelGCThreads=1 -Xmx8G
-jar /usr/local/bioinfo/GBSX/1.2/GBSX_v1.1.2.jar --Demultiplexer
-f1 WorkShopDataset/ReadFromTheSequencer_R1.fastq.gz
-i WorkShopDataset/DemultiplexingFile.tab -o Demultiplexed -gzip true -mb 0”

• The part of the command line between quotation marks (in bold) is the command line that is executed
on the computer chosen by the master computer.
 /usr/local/bioinfo/GBSX/1.2/GBSX_v1.1.2.jar: is the program that is used to demultiplex the fastq

file. Element in black are options/argument passed to this program to make it work (as a function
and its arguments in Excel!).

 --Demultiplexer: Tell the program that we want to demultiplex the fastq
 -f1 WorkShopDataset/ReadFromTheSequencer_R1.fastq.gz: locate the fastq file to demultiplex
 -i WorkShopDataset/DemultiplexingFile.tab: loacte the file containing the multiplexing

informations (which tags correspond to which samples and restriction enzymes used)
 -o Demultiplexed: The name of the output folder (this folder will be created by the program).
 -gzip true: Tells the program that output should be compressed to gain space (equivalent to .zip

files on Windows)
 -mb 0: Tells the program that 0 mismatch are allowed in the tag to attribute a read to an accession

 java -XX:ParallelGCThreads=1 -Xmx8G -jar: Tells to the computer that the program

/usr/local/bioinfo/GBSX/1.2/GBSX_v1.1.2.jar is written in java language (java), that java should
only use one processor (-XX:ParallelGCThreads=1) and that 8G memory are available for java (-
Xmx8G -jar). -jar indicate to java that the program is directly after.

22

From the output of GBS sequencing to the variant calling file: in command line

• One can check the status of job(s) with the following command line:

qstat

• Because the job we have sent is a very short one it is likely that it will be finished before you
run this command line… Here is an example of the what we can observe:

23

Job ID (unique)

Priority of the job

Name of the job
(-N option in the

qsub)

Owner of the job

Job status
r = running
qw = waiting to run (no computer available)
other (Eqw, dt, …) = there is a problem

Computer used

Processor
number used

24

From the output of GBS sequencing to the variant calling file: in command line

• Output of the demultiplexing command line. Listing the current directory:

ll

• One file and one folder are generated:

 A file named DEMULT.o7157685
- Correspond to the Name of the job passed to the qsub
(-N DEMULT) concatenated with the unique job ID
attributed by the master computer to the command line
(here: 7157685).
- Because some programs “speak”: this file contained
what they say. We can have a look at what the program
say with the more command:
more DEMULT.o7157685

 A folder named Demultiplexed
This folder was created by GBSX as we tell him to do it
with the (-o Demultiplexed) argument.

1

1
2

2

25

From the output of GBS sequencing to the variant calling file: in command line

• Listing the demultiplexed folder:

ll Demultiplexed

• To have a look at these files:
more Demultiplexed/gbsDemultiplex.log (for example)

• But because it is boring to always put Demultiplexed/ for all file which are in the directory,

we will directly go into this directory:
cd Demultiplexed

Reads parsed according to the
accession they belong to

A file containing reads that could
not be attributed to an accession
(i.e. sequencing error in the tag)

A file summarizing demultiplexing
options

A file with demultiplexing
statistics

26

From the output of GBS sequencing to the variant calling file: in command line

• The gbsDemultiplex.log file:
more gbsDemultiplex.log

27

From the output of GBS sequencing to the variant calling file: in command line

• The gbsDemultiplex.log file:
more gbsDemultiplex.stats

• Not very easy to read… We will load this file on our computer.
 For that we need FileZilla: https://filezilla-project.org/
 Install it
 Connect to your cluster account:

Your_ID Cluster pwd

22

cc2-login.cirad.fr

Double clic

https://filezilla-project.org/
https://filezilla-project.org/
https://filezilla-project.org/
https://filezilla-project.org/

28

From the output of GBS sequencing to the variant calling file: in command line

• The gbsDemultiplex.log file:

• Go to the Demultiplexed folder: work vcfhunterGBS Demultiplexed

1 2

Your computer The cluster

Double clic

• The gbsDemultiplex.log file:

• Your file has been copied to your desktop.
• Open it with Excel!

29

From the output of GBS sequencing to the variant calling file: in command line

1 2

Your computer The cluster

“Drag and drop”

• The gbsDemultiplex.log file:

30

From the output of GBS sequencing to the variant calling file: in command line

• The sampleX.R1.fastq.gz files: For example sample2.R1.fastq.gz

zmore sample2.R1.fastq.gz

• Sample tags were removed from reads
• Illumina adapters are still present at the end of some read (i.e. when sequenced fragments

are shorter than illumina reads) These adapters should be removed as they do not belong
to the sample!

31

From the output of GBS sequencing to the variant calling file: in command line

pstI restriction site

mseI restriction site
Adapter sequence

32

From the output of GBS sequencing to the variant calling file: in command line

• Removing adapters and quality trimming of read.
The quality trimming is not necessary here as this is simulated reads with top quality but in reality as
sequencing quality decrease along a read this is necessary.

• For that we will use cutadapt (https://cutadapt.readthedocs.io/en/stable/guide.html, https://doi.org/10.14806/ej.17.1.200)

• To load cutadapt:

module purge
module load bioinfo/cutadapt/1.8.1
module load system/python/3.4.3

• To use cutadapt on sample2, run the command line:

qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG
-O 10 -q 20,20 -f fastq -m 30 -o sample2.R1.fastq.gz.cut.gz
sample2.R1.fastq.gz

To remove already loaded modules (prevent conflicts)

cutadapt also required python module

The cutadapt module

https://cutadapt.readthedocs.io/en/stable/guide.html
https://cutadapt.readthedocs.io/en/stable/guide.html
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200

33

From the output of GBS sequencing to the variant calling file: in command line

• Command line explanation

qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o
sample2.R1.fastq.gz.cut.gz sample2.R1.fastq.gz

• The first part of the command line (in bold) is used by the master computer (as previously
described):

 qsub: Means that we will send a command that the master computer needs to analyze to choose

the best computer

 -q normal.q: tells the master computer that we will use computer from normal queue.

 -b yes: it is not important, but put it.

 -V: Tell the master computer to load the module previously loaded on the computer it will choose
to run the program

 -N CUTADAPT: A name passed to the command line to look at its status (waiting, running or error)
on the cluster

34

From the output of GBS sequencing to the variant calling file: in command line

• Command line explanation

qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o
sample2.R1.fastq.gz.cut.gz sample2.R1.fastq.gz

• The part of the command line between quotation marks (in bold) is the command line that is
executed on the computer chosen by the master computer.
 cutadapt: tell that we will be using cutadapt program

 -a CAGATCGGAAGAGCG: tells cutadapt that it should look for adapter sequence at 3’ end and that

it should remove this sequence and all that follows.

 -O 10: If the overlap between the read and the adapter is shorter than 10, the read is not modified.
This reduces the no. of bases trimmed purely due to short random adapter matches

 -q 20,20: Trim the 5’ and the 3’ until a base quality of 20 is reached

 -f fastq : The input format file is fastq

 -m 30 : only read equal or greater than 30 bases will be conserved

 -o sample2.R1.fastq.gz.cut.gz: Name of the output file

 sample2.R1.fastq.gz: Name of the file processed by cutadapt

35

From the output of GBS sequencing to the variant calling file: in command line

• Outputs: To visualize new file generated, list the files in the repository:

ll

1

2

Two files have been generated:

• The CUTADAPT.oxxxxxxx file

containing what cutadapt told
us while it was executing

• The sample2.R1.fastq.gz.cut.gz
containing filtered read

1

2

36

From the output of GBS sequencing to the variant calling file: in command line

• The sample2.R1.fastq.gz file before cutadapt:
zmore sample2.R1.fastq.gz

• And After cutadapt
zmore sample2.R1.fastq.gz.cut.gz

pstI restriction site mseI restriction site

Adapter sequence

37

From the output of GBS sequencing to the variant calling file: in command line

• The CUTADAPT.oxxxxxxx file:
zmore CUTADAPT.oxxxxxxx

There is a warning saying that maybe the
adapter sequence is incomplete because
very often (99.8% of cases), when an
adapter is found, the “A” base was found
just before…

This is normal because just before the
adapter we have our mseI restriction site

38

From the output of GBS sequencing to the variant calling file: in command line

• This command line should be adapted and executed for each sample:
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample10.R1.fastq.gz.cut.gz sample10.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample11.R1.fastq.gz.cut.gz sample11.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample12.R1.fastq.gz.cut.gz sample12.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample1.R1.fastq.gz.cut.gz sample1.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample2.R1.fastq.gz.cut.gz sample2.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample3.R1.fastq.gz.cut.gz sample3.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample4.R1.fastq.gz.cut.gz sample4.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample5.R1.fastq.gz.cut.gz sample5.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample6.R1.fastq.gz.cut.gz sample6.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample7.R1.fastq.gz.cut.gz sample7.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample8.R1.fastq.gz.cut.gz sample8.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample9.R1.fastq.gz.cut.gz sample9.R1.fastq.gz

• This is relatively easy when we have few files but when this should be done on hundreds of

files it is a bit annoying… This can be solved with “for” loop in bash programing!

• Here is the command line for our example (advanced programing!):

for i in *.fastq.gz

do qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a
CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o $i.cut.gz $i

done

39

From the output of GBS sequencing to the variant calling file: in command line

• This command line should be adapted and executed for each sample:
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample10.R1.fastq.gz.cut.gz sample10.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample11.R1.fastq.gz.cut.gz sample11.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample12.R1.fastq.gz.cut.gz sample12.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample1.R1.fastq.gz.cut.gz sample1.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample2.R1.fastq.gz.cut.gz sample2.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample3.R1.fastq.gz.cut.gz sample3.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample4.R1.fastq.gz.cut.gz sample4.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample5.R1.fastq.gz.cut.gz sample5.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample6.R1.fastq.gz.cut.gz sample6.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample7.R1.fastq.gz.cut.gz sample7.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample8.R1.fastq.gz.cut.gz sample8.R1.fastq.gz
qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o sample9.R1.fastq.gz.cut.gz sample9.R1.fastq.gz

• This is relatively easy when we have few files but when this should be done on hundreds of

files it is a bit annoying… This can be solved with “for” loop in bash programing!

• Here is the command line for our example (advanced programing!):

for i in *.fastq.gz

do qsub -q normal.q -b yes -V -N CUTADAPT cutadapt -a
CAGATCGGAAGAGCG -O 10 -q 20,20 -f fastq -m 30 -o $i.cut.gz $i

done

Initiation of a loop: For all files in the folder finishing by
“.fastq.gz”…

Their name is sequentially stored in a variable “i”, and, for each values “i” (each read sample files), the
cutadapt command line is executed on the file recorded in the variable i ($i) and the output is stored in a
file called i+”.cut.gz” ($i.cut.gz) .
For example when i = sample10.R1.fastq.gz : $i.cut.gz = sample10.R1.fastq.gz.cut.gz

Tell that this is the end of the loop

40

From the output of GBS sequencing to the variant calling file: in command line

• Listing the files in the folder:
ll

• A CUTADAPT.oxxxxxxx file has been
generated per sample

• A filtered fastq file per sample has been
generated per accessions

From the output of GBS sequencing to the variant calling file: in command line

• We will use vcfHunter program which is installed on the AGAP cluster under module
“vcfhunter”

• To load this module run the command line:

module purge
module load bioinfo/vcfhunter/1.0.0

• The module is now loaded. This can be verified with de following command line:

module list

• We can see that the vcfhunter module is loaded as well as several other modules which will
be used by vcfhunter

41

From the output of GBS sequencing to the variant calling file: in command line

• We are going to work in a new folder for vcfHunter. This is not necessary but for file ordering,
this will be better. But first where are we? To answer this question we use a simple
command:
pwd

• From there we want to go back to vcfhunterGBS folder. There are two possibility:

cd /home/Your_ID/work/vcfhunterGBS

Or

cd ..

42

This locate the path where you are when you
execute the pwd command. Instead of “gmartin”, you
should have your login ID

change directory to
/home/Your_ID/work/vcfhunterGBS

change directory to one folder before. And
one folder before there is vcfhunterGBS

From the output of GBS sequencing to the variant calling file: in command line

• Where are we now?

pwd

• Now we create the new folder

mkdir Mapping

• And we go into this folder

cd Mapping

43

From the output of GBS sequencing to the variant calling file: in command line

• At this stage, we have 12 fastq files:
 One for each samples, which comprised cleaned/filtered reads.
 These files are located in a folder named Demultiplexed, located

/home/Your_ID/work/vcfhunterGBS

• To run vcfHunter program, we also need an additional file which contained the reference
sequence (in fasta format), on which we will align the reads. This file is already present in the
WorkShopDataset folder located here:
/home/Your_ID/work/vcfhunterGBS/WorkShopDataset. This file is named Ref.fasta (It is
the folder you copied at the beginning of this exercise).

• Because at this time we are in the Mapping folder loacted
/home/Your_ID/work/vcfhunterGBS/Mapping, to have a look at this file we should go back
from one folder (..) to enter the WorkShopDataset folder and then access to Ref.fasta
file. Thus, to have a look at this file:
more ../WorkShopDataset/Ref.fasta

44

Standard fasta format with each sequences beginning
with a “>”+sequence name , followed by DNA
sequence .

1

2

1

2

From the output of GBS sequencing to the variant calling file: in command line

• The sample fastq read file and reference fasta files should be passed recorded in a
configuration unique file which will be given to vcfHunter program.

• For this example, the configuration file (GBSCalling.conf) has already been created can be
found here: /home/Your_ID/work/vcfhunterGBS/WorkShopDataset. To have a look at this
file and because we are in the Mapping folder we just created:
more ../WorkShopDataset/GBSCalling.conf

• Possible to generate this file with a loop for
Those who want to try!

45

A [Reference] section locating
how to access reference fasta.

1 2 3 4

A [Libraries] section locating how to access sample
fastq reads files and additional information to
sample:
 Unique ID for each fastq
 Sample Name (Name that will appear in the vcf)
 How to access to the fastq read file
 Accession ploidy

1
2
3
4

From the output of GBS sequencing to the variant calling file: in command line

• One last thing before using vcfHunter module: This program has several programs, we will
use process_reseq_1.0.py program which have several options, to have access to a
description of these options, you can try the following command line:
process_reseq_1.0.py -h

46

Distinct steps: which will be performed
sequentially for better explanation

Several options

From the output of GBS sequencing to the variant calling file: in command line

• Running read mapping process
qsub -q normal.q -l mem_free=12G -b yes -V -N GBSa "process_reseq_1.0.py -c
../WorkShopDataset/GBSCalling.conf -p GBSset -s a -t 1"

• The first part of the command line (in bold) is used by the master computer (as previously
described):

 qsub: Means that we will send a command that the master computer needs to analyze to choose

the best computer

 -q normal.q: tells the master computer that we will use computer from normal queue.

 -l mem_free=12G: precise that the program will use 12G of RAM (so the master computer will
check that it is available on the computers). This is necessary because this step will use java
program and this will prevent errors…

 -b yes: it is not important, but put it.

 -V: Tell the master computer to load the module previously loaded on the computer it will choose

 -N GBSa: A name passed to the command line to look at its status (waiting, running or error) on the
cluster

47

From the output of GBS sequencing to the variant calling file: in command line

• Running read mapping process
qsub -q normal.q -l mem_free=12G -b yes -V -N GBSa "process_reseq_1.0.py -c
../WorkShopDataset/GBSCalling.conf -p GBSset -s a -t 1"

• The part of the command line between quotation marks (in bold) is the command line that is
executed on the computer chosen by the master computer:
 process_reseq_1.0.py: We will use process_reseq_1.0.py program
 -c ../WorkShopDataset/GBSCalling.conf: Locates the configuration file
 -p GBSset: A prefix for final output file
 -s a: Tell the program that we will perform step “a” of the workflow

 -t 1: Tell the program that only one processor is available. This means that each accessions will be
treated sequencially

48

From the output of GBS sequencing to the variant calling file: in command line

• Listing the files generated:
ll

49

The GBSa.oxxxxxxx file containing what
process_reseq_1.0.py told us while it was

executing

A folder for each accession. Which
contained several items. To have a look at
these items, for example for S1
accession:

ll S1

Read mapping statistics

A .bai file: is an index of a bam file for
computation performance

A .bam file: contained sample 1 reads
aligned onto the reference

A folder containing read and alignment
statistics

From the output of GBS sequencing to the variant calling file: in command line

• Listing one of the stat folder:
ll S1/STATS/

50

• Several files are generated but one
summarize all of them: the one named:
index.html

• This is an html file readable by firefox. To
have a look at this file:
firefox S1/STATS/index.html

• This command open a firefox window:

From the output of GBS sequencing to the variant calling file: in command line

• Listing one of the stat folder:
ll S1/STATS/

51

• Several files are generated but one
summarize all of them: the one named:
index.html

• This is an html file readable by firefox. To
have a look at this file:
firefox S1/STATS/index.html

• This command open a firefox window:

From the output of GBS sequencing to the variant calling file: in command line

• The alignment file (bam format): These file are compressed binary files (easier to use by
programs) but not directly readable for human… These file can still be observed with the
samtools program with the command line:
samtools view -h S1/S1_merged.bam | more

52

Convert the bam is sam format
(readable by human)

Read this converted
file line by line

Header containing information on:
- reference sequences
- Aligner used

Read 2
Read 3
Read 4

Read 1

Read name
Tag regarding read

mapping
information

https://broadinstitute.githu
b.io/picard/explain-

flags.html

Read mapping
chromosome

Read position

Mapping quality

CIGAR
(80M = 80 Match)

Read sequence

Read quality

+ Other informations (see link
for more information)
https://samtools.github.io/hts-
specs/SAMv1.pdf

• To quit: “Ctrl” + “C”

https://broadinstitute.github.io/picard/explain-flags.html
https://broadinstitute.github.io/picard/explain-flags.html
https://broadinstitute.github.io/picard/explain-flags.html
https://broadinstitute.github.io/picard/explain-flags.html
https://broadinstitute.github.io/picard/explain-flags.html
https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf

From the output of GBS sequencing to the variant calling file: in command line

• The GBSa.oxxxxxxx file:
more GBSa.oxxxxxxxx

• List steps performed during step “a”

53

Reference indexation

Read alignment
with “bwa”

Calculating
alignment statistics

Ploting alignment stats

Removing
unmapped read
and secondary

alignment

Concatenating reads
from the same

accessions but from
several libraries (not
necessary here but
performed anyway)

Starting a new
accession

• To quit: “Ctrl” + “C” or “enter”
until the end of file

From the output of GBS sequencing to the variant calling file: in command line

54

• Running read indel realignment:
qsub -q normal.q -l mem_free=12G -b yes -V -N GBSc "process_reseq_1.0.py -c
../WorkShopDataset/GBSCalling.conf -p GBSset -s c -t 1"

• The first part of the command line (in bold) is used by the master computer (as previously
described):

 qsub: Means that we will send a command that the master computer needs to analyze to choose

the best computer

 -q normal.q: tells the master computer that we will use computer from normal queue.

 -l mem_free=12G: precise that the program will use 12G of RAM (so the master computer will
check that it is available on the computers). This is necessary because this step will use java
program and this will prevent errors…

 -b yes: it is not important, but put it.

 -V: Tell the master computer to load the module previously loaded on the computer it will choose

 -N GBSc: A name passed to the command line to look at its status (waiting, running or error) on the
cluster

From the output of GBS sequencing to the variant calling file: in command line

55

• Running read indel realignment:
qsub -q normal.q -l mem_free=12G -b yes -V -N GBSc "process_reseq_1.0.py -c
../WorkShopDataset/GBSCalling.conf -p GBSset -s c -t 1"

• The part of the command line between quotation marks (in bold) is the command line that is
executed on the computer chosen by the master computer:
 process_reseq_1.0.py: We will use process_reseq_1.0.py program
 -c ../WorkShopDataset/GBSCalling.conf: Locates the configuration file
 -p GBSset: A prefix for final output file
 -s c: Tell the program that we will perform step “c” of the workflow

 -t 1: Tell the program that only one processor is available. This means that each accessions will be
treated sequencially

From the output of GBS sequencing to the variant calling file: in command line

56

• Why performing indel realalignment?
 Because the alignment around indel can be problematic…

 several polimorphism with the same sequence!

 Realignment around indel:

GCAACAAGGGTTACAGATCGGAAAAGAGCGGTTCAGCAGGAATGCCG
 CAAGGGTTACAGATCGGAAA-TAGCGGTTCAGCA
 GGGTTACAGATCGGAAA-TAGCGGTTCAGCAGGAATGCCG
 AGGGTTACAGATCGGAAA-TAGCGGTTCAGCAGGAATGCCG
 **

Reference

GCAACAAGGGTTACAGATCGGAAAAGAGCGGTTCAGCAGGAATGCCG
 CAAGGGTTACAGATCGGAAA-TAGCGGTTCAGCA
 GGGTTACAGATCGGAAAT-AGCGGTTCAGCAGGAATGCCG
 AGGGTTACAGATCGGAA-ATAGCGGTTCAGCAGGAATGCCG

Reference

indel

Indel+SNP

SNP+indel

indel SNP

From the output of GBS sequencing to the variant calling file: in command line

• Listing the files generated:
ll

57

The GBSc.oxxxxxxx file containing what
process_reseq_1.0.py told us while it was

executing

A folder for each accession which
contained realigned reads. To have a look
at these files, for example for S1
accession:

ll S1

A .bai file: is an index of the realigned
bam file for computation performance

A realigned.bam file: contained sample 1
reads realigned around indels

From the output of GBS sequencing to the variant calling file: in command line

• The GBSa.oxxxxxxx file:
more GBSc.oxxxxxxx

• List steps performed during step “c”

• Indel realignment was performed using GATK (https://software.broadinstitute.org/gatk/) in
two steps (https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-

0/org_broadinstitute_gatk_tools_walkers_indels_RealignerTargetCreator.php):

• “Determining (small) suspicious intervals which are likely in need of realignment”

• “Running the realigner over those intervals”

58

1
2

1

2

S8

S7

https://software.broadinstitute.org/gatk/
https://software.broadinstitute.org/gatk/
https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_indels_RealignerTargetCreator.php
https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_indels_RealignerTargetCreator.php
https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_indels_RealignerTargetCreator.php
https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_indels_RealignerTargetCreator.php

From the output of GBS sequencing to the variant calling file: in command line

59

• Running allele count:
qsub -q normal.q -b yes -V -N GBSe "process_reseq_1.0.py -c
../WorkShopDataset/GBSCalling.conf -p GBSset -s e -t 1"

• The first part of the command line (in bold) is used by the master computer (as previously
described):

 qsub: Means that we will send a command that the master computer needs to analyze to choose

the best computer

 -q normal.q: tells the master computer that we will use computer from normal queue.

 -b yes: it is not important, but put it.

 -V: Tell the master computer to load the module previously loaded on the computer it will choose

 -N GBSe: A name passed to the command line to look at its status (waiting, running or error) on the
cluster

From the output of GBS sequencing to the variant calling file: in command line

60

• Running allele count:
qsub -q normal.q -b yes -V -N GBSe "process_reseq_1.0.py -c
../WorkShopDataset/GBSCalling.conf -p GBSset -s e -t 1"

• The part of the command line between quotation marks (in bold) is the command line that is
executed on the computer chosen by the master computer:
 process_reseq_1.0.py: We will use process_reseq_1.0.py program
 -c ../WorkShopDataset/GBSCalling.conf: Locates the configuration file
 -p GBSset: A prefix for final output file
 -s e: Tell the program that we will perform step “e” of the workflow

 -t 1: Tell the program that only one processor is available. This means that each accessions will be
treated sequencially

From the output of GBS sequencing to the variant calling file: in command line

• Listing the files generated:
ll

61

The GBSe.oxxxxxxx file containing what
process_reseq_1.0.py told us while it was

executing

A folder for each accession which
contained realigned reads. To have a look
at these files, for example for S1
accession:

ll S1

Three files (one for each chromosomes)
which count for each covered position by
reads, the number of read supporting
each possible alleles

From the output of GBS sequencing to the variant calling file: in command line

• Example of S1_allele_count_chr01.gz file:
zmore S1/S1_allele_count_chr01.gz

62

Chromosome

Position

Reference
base

Total read
coverage

Reads
with A
alleles

Reads
with C
alleles

…
Reads
with

deletion

• To quit: “Ctrl” + “C” or “enter”
until the end of file

From the output of GBS sequencing to the variant calling file: in command line

63

• Creating the variant calling file (VCF):
qsub -q normal.q -pe parallel_smp 3 -b yes -V -N GBSf "process_reseq_1.0.py
-c ../WorkShopDataset/GBSCalling.conf -p GBSset -s f -t 3"

• The first part of the command line (in bold) is used by the master computer (as previously
described):

 qsub: Means that we will send a command that the master computer needs to analyze to choose

the best computer

 -q normal.q: tells the master computer that we will use computer from normal queue.

 -pe parallel_smp 3: tells the master computer that we need 3 processor (this can be used to gain
speed in computation time if the program allowed it)

 -b yes: it is not important, but put it.

 -V: Tell the master computer to load the module previously loaded on the computer it will choose

 -N GBSf: A name passed to the command line to look at its status (waiting, running or error) on the
cluster

From the output of GBS sequencing to the variant calling file: in command line

64

• Creating the variant calling file (VCF):
qsub -q normal.q -pe parallel_smp 3 -b yes -V -N GBSf "process_reseq_1.0.py
-c ../WorkShopDataset/GBSCalling.conf -p GBSset -s f -t 3"

• The part of the command line between quotation marks (in bold) is the command line that is
executed on the computer chosen by the master computer:
 process_reseq_1.0.py: We will use process_reseq_1.0.py program
 -c ../WorkShopDataset/GBSCalling.conf: Locates the configuration file
 -p GBSset: A prefix for final output file
 -s f: Tell the program that we will perform step “f” of the workflow

 -t 3: Tell the program that only three processors are available (allowed by -pe parallel_smp 3). With
this option, all three chromosomes will be treated independently at the same time by one
processor each. This allowed to gain computation time

From the output of GBS sequencing to the variant calling file: in command line

• Listing the files generated:
ll

65

The GBSf.oxxxxxxx file containing what
process_reseq_1.0.py told us while it was

executing

Three vcf files containing genotyping
informations, one for each
chromosomes

An always empty file associated
to -pe parallel_smp 3 options

From the output of GBS sequencing to the variant calling file: in command line

• What can be found in a vcf format:
more GBSset_chr01_all_allele_count.vcf

66

• To quit: “Ctrl” + “C” or “enter”
until the end of file

Header of the vcf file containing information about:
 Reference file location
 Genotype format description
 Reference sequence name and size

1

Variant line 3 3

Real header of variant calling file 1

Variant line 1 2

2

3

• Looking at the vcf file with excel because it is easier (Not to do on real dataset!):

• Using filezilla to get the data on our computer:

• Open it with Excel!

67

From the output of GBS sequencing to the variant calling file: in command line

1 2

Your computer The cluster

“Drag and drop”

• The vcf file format:

68

From the output of GBS sequencing to the variant calling file: in command line

Header

Chromosome
Position

Reference allele

Alternate allele(s)

Format of the genotyping

Accessions

• The vcf file format:

69

From the output of GBS sequencing to the variant calling file: in command line

Describe the way the genotype is formatted for each accessions:
 GT = genotype
 AD = allele depth
 DP = depth

 GT = 0/0
 AD = 17,0,0
 DP = 17

Based on these allelic depths, calculation of the likelihood of each haplotypes:
 0/0 = T/T
 0/1 = T/A
 0/2 = T/C
 1/2 = A/C
 1/1 = A/A
 2/2 = C/C

From the output of GBS sequencing to the variant calling file: in command line

70

• Because it is sometime easier to have only one file for all chromosomes, this unique file can
be produced with this last command line:
qsub -q normal.q -b yes -V -N GBSg "process_reseq_1.0.py -c
../WorkShopDataset/GBSCalling.conf -p GBSset -s g -t 1"

• The first part of the command line (in bold) is used by the master computer (as previously
described):

 qsub: Means that we will send a command that the master computer needs to analyze to choose

the best computer

 -q normal.q: tells the master computer that we will use computer from normal queue.

 -b yes: it is not important, but put it.

 -V: Tell the master computer to load the module previously loaded on the computer it will choose

 -N GBSf: A name passed to the command line to look at its status (waiting, running or error) on the

cluster

From the output of GBS sequencing to the variant calling file: in command line

71

• Because it is sometime easier to have only one file for all chromosomes, this unique file can
be produced with this last command line:
qsub -q normal.q -b yes -V -N GBSg "process_reseq_1.0.py -c
../WorkShopDataset/GBSCalling.conf -p GBSset -s g -t 1"

• The part of the command line between quotation marks (in bold) is the command line that is
executed on the computer chosen by the master computer:
 process_reseq_1.0.py: We will use process_reseq_1.0.py program
 -c ../WorkShopDataset/GBSCalling.conf: Locates the configuration file
 -p GBSset: A prefix for final output file
 -s g: Tell the program that we will perform step “g” of the workflow

 -t 1: Tell the program that only one processor is available.

From the output of GBS sequencing to the variant calling file: in command line

• Listing the file generated:
ll

72

The GBSg.oxxxxxxx file containing what
process_reseq_1.0.py told us while it was

executing

A vcf file containing all chromosomes

From the output of GBS sequencing to the variant calling file: in command line

• To discriminate between sequencing errors and true variant site we developed an additional
program which allowed to select true polymorphous SNP according to selected parameters.
This program is called VcfPreFilter.1.0.py and can be executed with the following command
line:
qsub -q normal.q -b yes -V -N PREFLTR "VcfPreFilter.1.0.py -v
GBSset_all_allele_count.vcf -m 10 -M 10000 -f 0.05 -c 3 -o
GBSset_prefiltered.vcf -d y"

• The first part of the command line (in bold) is used by the master computer (as previously
described):

 qsub: Means that we will send a command that the master computer needs to analyze to choose

the best computer

 -q normal.q: tells the master computer that we will use computer from normal queue.

 -b yes: it is not important, but put it.

 -V: Tell the master computer to load the module previously loaded on the computer it will choose

 -N PREFLTR: A name passed to the command line to look at its status (waiting, running or error) on

the cluster

73

From the output of GBS sequencing to the variant calling file: in command line

qsub -q normal.q -b yes -V -N PREFLTR "VcfPreFilter.1.0.py -v
GBSset_all_allele_count.vcf -m 10 -M 10000 -f 0.05 -c 3 -o
GBSset_prefiltered.vcf -d y"

• The part of the command line between quotation marks (in bold) is the command line that is
executed on the computer chosen by the master computer:
 VcfPreFilter.1.0.py: We will use VcfPreFilter.1.0.py program
 -v GBSset_all_allele_count.vcf: Locates the vcf file to filter
 -m 10 : Only datapoint with coverage supported by more than 10 reads will be considered
 -M 10000: Only datapoint with coverage supported by less than 10000 reads will be considered (to

manage very high repeats)
 -f 0.05: An allele is kept if it is present in at least this proportion in at least one accession.
 -c 3: An allele is kept if it is supported by at least 3 reads in at least one accession.
 -o GBSset_prefiltered.vcf: Name of the output file
 -d y: Perform only diallelic calling (i.e. for triploid accessions, A/C/G genotype is not possible

because only two alleles are allowed in a genotype: A/A/C or A/G/G, or … genotype are tested).

• According to -m, -M, -f and -c parameters the number of possible alleles is counted (including
the reference sequence allele, and if this number is strictly greater than 1, the line is
identified as a polymorphous line that should be reported)

74

From the output of GBS sequencing to the variant calling file: in command line

• Prefiltering example:

75

-m 10 -M 10000 -f 0.05 -c 3

Number of alleles reported = 0
 Not a reported variant line

No allele pass the -m 10 cutoff

From the output of GBS sequencing to the variant calling file: in command line

• Prefiltering example:

76

-m 10 -M 10000 -f 0.05 -c 3

Number of alleles reported = 1 < 2
Not a reported variant line because

homozygous.

Reported first because sequencing
error in S2 with one read having “C”

Allele passing cutoffs: A A A A A A A A A A AC A

From the output of GBS sequencing to the variant calling file: in command line

• Prefiltering example:

77

-m 10 -M 10000 -f 0.05 -c 3

Number of alleles reported = 2
 Reported variant line because

polymorphism was detected
(according to passed parameters).

Allele passing cutoffs: A T AGT T A T CT T T T T T

From the output of GBS sequencing to the variant calling file: in command line

• Listing the files generated:
ll

78

PREFLTR.oxxxxxxx file containing what
VcfPreFilter.1.0.py told us while it was

executing

A vcf file prefiltered

• Download this file with filezilla:

79

From the output of GBS sequencing to the variant calling file: in command line

• Open the vcf with excel: (less missing data)

80

From the output of GBS sequencing to the variant calling file: in command line

An additional tag (GC) appeared: the
ratio between the best genotype

probability found and the second best
genotype probability found.

From the output of GBS sequencing to the variant calling file: in command line

• This prefiltering step was designed to discriminate between variant lines resulting from
sequencing errors and true variant line.

• However, one can want to apply additional filters such as reporting only diallelic
polymorphous SNP, minimal coverage confidence to call a variant, missing data proportion,
etc…

• For that we first need to generate a file containing a list of accessions we want to apply filter
on. If we want to apply this filter on all accessions of the vcf, this file can be generated by a
“simple” command line that will work on any vcf files you have!

head -n 10000 GBSset_prefiltered.vcf | grep "#CHROM" | sed 's/\t/\n/g' |
tail -n +10 > all_names.tab

• We take the first 10000 lines of the vcf: head -n 10000 GBSset_prefiltered.vcf
• Of these 10000 lines, we get the line with the accessions names which also contained

“#CHROM”: grep "#CHROM"
• Of this line we convert tabulation into carriage return: sed 's/\t/\n/g'
• And we take all lines from the result, but only from line number 10 to the end: tail -n +10
• The selected lines are written to a file named: all_names.tab

81

From the output of GBS sequencing to the variant calling file: in command line

• Once the name file as been created: this can be verified with ll command:

• This file contained accession names: more all_names.tab

• A third script, called vcfFilter.1.0.py as been designed to filter the vcf (GBSset_prefiltered.vcf).

For example, we may want to:
(1) convert to missing data:

 all datapoints which are not supported by at least 15 reads (no sufficient coverage to call good
genotype)

 all datapoints which are not supported by more than 300 reads (probably repeat sequences)
 all datapoints for which each alleles is not supported by 3 read and a minimal read proportion of

0.2

(2) remove all line which contained missing data,
(3) remove mono, tri and tetra allelic sites,
(4) write the output in a file which prefix is GBSset_Filtered.

To apply these filters do not try the command following command line:

qsub -q normal.q -b yes -V -N FLTR "vcfFilter.1.0.py --vcf
GBSset_prefiltered.vcf --names all_names.tab --MinCov 15 --MaxCov 300 --
MinAl 3 --MinFreq 0.2 --nMiss 0 --RmAlAlt 1:3:4 --prefix GBSset_Filtered"

82

From the output of GBS sequencing to the variant calling file: in command line

• Listing the files generated:
ll

83

The filtered vcf file

FLTR.oxxxxxxx file containing what
vcfFilter.1.0.py told us while it was

executing
more FLTR.oxxxxxxx

From the output of GBS sequencing to the variant calling file: in command line

• A tutorial for variant calling of WGS data is also available here:

https://github.com/SouthGreenPlatform/VcfHunter/blob/master/tutorial_VariantCalling.md

• Vcfhunter module contained additional tools for genetic mapping analysis and
chromosome painting described and available here:

https://github.com/SouthGreenPlatform/VcfHunter

84

https://github.com/SouthGreenPlatform/VcfHunter/blob/master/tutorial_VariantCalling.md
https://github.com/SouthGreenPlatform/VcfHunter/blob/master/tutorial_VariantCalling.md
https://github.com/SouthGreenPlatform/VcfHunter

