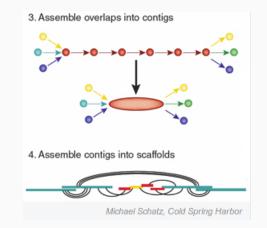

NGS sequence application, a few examples

Dr Francois Sabot & Christine Tranchant-Dubreuil 8th of October, 2018

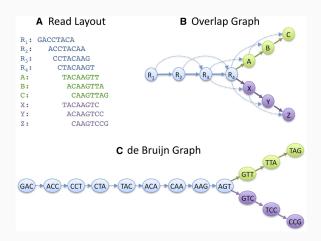
IRD - UMR DIADE

Analyses



From Baker, 2012

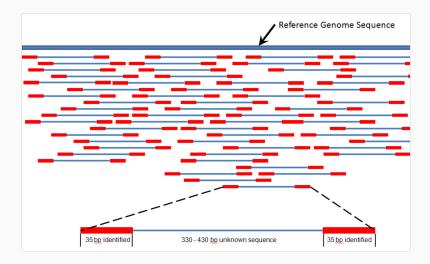
Assembly



From Baker, 2012

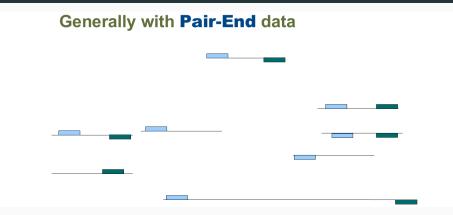
3

Assembly

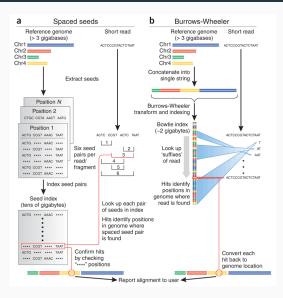


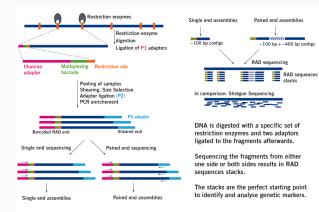
From Schatz, 2010

Mapping

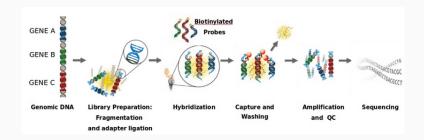

From Wikipedia

Generally with Pair-End data





Mapping



From Eurofins

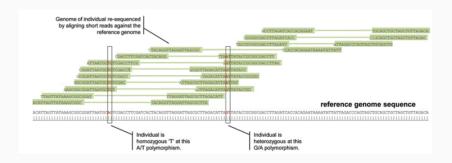
9

From CGFB, Bordeaux, France

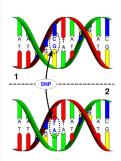
• Mainly in RNA sequencing, but also in CNV (Copy Number Variation)

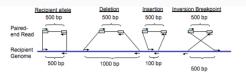
- Mainly in RNA sequencing, but also in CNV (Copy Number Variation)
- Counting the number of reads/bases at each position

- Mainly in RNA sequencing, but also in CNV (Copy Number Variation)
- Counting the number of reads/bases at each position
- More precise than ChiP



- Mainly in RNA sequencing, but also in CNV (Copy Number Variation)
- Counting the number of reads/bases at each position
- More precise than ChiP
- Need to be reproduced


- Mainly in RNA sequencing, but also in CNV (Copy Number Variation)
- Counting the number of reads/bases at each position
- More precise than ChiP
- Need to be reproduced
- Lots of Statistical models and Controls behind



SNP and InDel Detection

Types of variants

SNPs

 Alignment
 VCF representation

 ACGT
 POS
 REF
 ALT

 ATGT
 2
 C
 T

Deletions

Alignment VCF rep ACGT POS RE A--T 1 AC

VCF representation POS REF ALT 1 ACG A Complex events Alignment VCF representation ACGT POS REF ALT

2 C CT

Insertions

Alianment

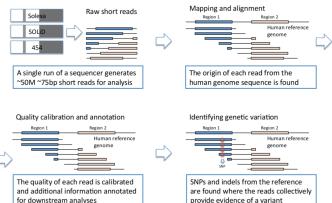
AC-GT

ACTGT

A-TT

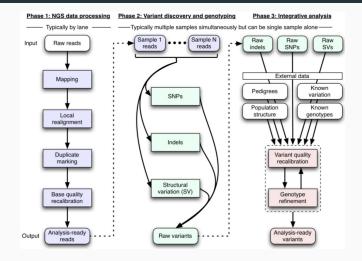
1 ACG AT

VCF representation

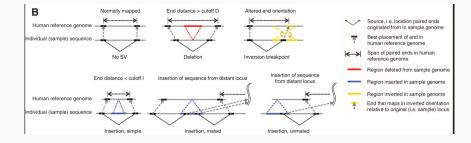

POS REF ALT

Large structural variants

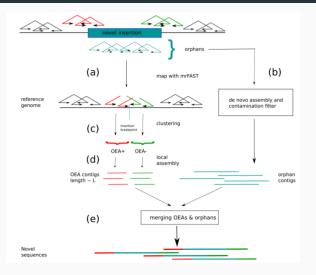
VCF representation POS REF ALT INFO 100 T SVTYPE=DEL;END=300

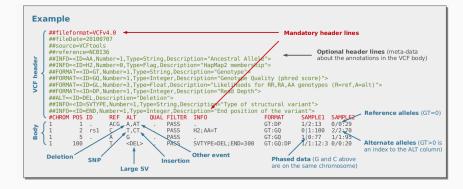


From unmapped reads to true genetic variation in next-generation sequencing data


And even more refined...

Structural Variant Detection




From Korbel et al, 2007

Structural variation, an approach

VCF = Variant Call Format From 1000 Genomes Project

Application	GS FLX++	GS Junior	HiSeq 2500	MiSeq	PacBio RS
Genome Sequencing					
De novo sequencing of bacterial & fungal genomes	~~~		1	11	~
De novo sequencing of higher eukaryotic genomes	~~		111		1
De novo sequencing of BACs, viruses & plasmids	~~~	111			~
Resequencing of genomes			111	11	
Transcriptome Sequencing					
De novo Transcriptome sequencing	111		VV	11	
Expression profiling			111		
Small RNA sequencing			111	11	
ChIP sequencing			111	11	
Resequencing & Amplicons					
Ultra deep amplicon sequencing	111	111	×.	√	
Resequencing by Sequence Capture	11	1	111		

From Eurofins

Assembly : Nanopore, PacBio, Illumina (MySeq + HiSeq, various libraries)

Assembly : Nanopore, PacBio, Illumina (MySeq + HiSeq, various libraries)

SNP detection : Illumina

Assembly : Nanopore, PacBio, Illumina (MySeq + HiSeq, various libraries)

SNP detection : Illumina

SV Variation : Nanopore, PacBio, Illumina, IonTorrent

Assembly : Nanopore, PacBio, Illumina (MySeq + HiSeq, various libraries)

SNP detection : Illumina

SV Variation : Nanopore, PacBio, Illumina, IonTorrent

Quantification : Illumina

• Amount of original samples

- Amount of original samples
- Size of sequenced unit

- Amount of original samples
- Size of sequenced unit
- Error rate

- Amount of original samples
- Size of sequenced unit
- Error rate
- Volume of Outputted data

- Amount of original samples
- Size of sequenced unit
- Error rate
- Volume of Outputted data

All linked to technical constraints

• Cleaning data level

- Cleaning data level
- Mapping Conditions

- Cleaning data level
- Mapping Conditions
- Mapping Cleaning Conditions

- Cleaning data level
- Mapping Conditions
- Mapping Cleaning Conditions
- Variation Calling level

- Cleaning data level
- Mapping Conditions
- Mapping Cleaning Conditions
- Variation Calling level

All linked to the Specificity/Sensitivity Informatics Paradox

• Availability of Sample

- Availability of Sample
- Choice of Sample

- Availability of Sample
- Choice of Sample
- Amount of Sample

- Availability of Sample
- Choice of Sample
- Amount of Sample
- Purity of Sample

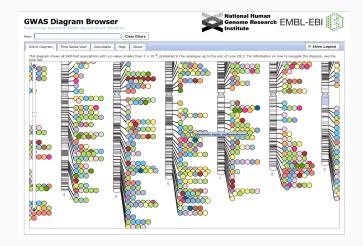
- Availability of Sample
- Choice of Sample
- Amount of Sample
- Purity of Sample
- Size of sample (for Assembly/Mapping essentially)

Applications

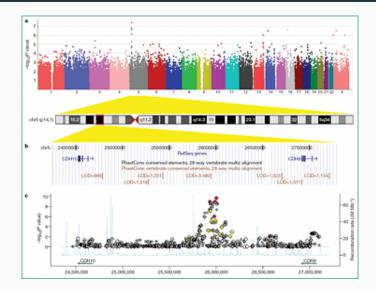
• Gene discovery/GWAs

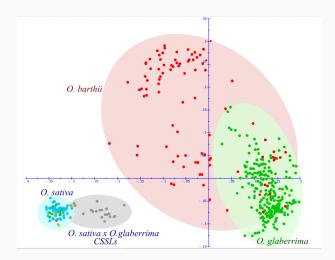
- $\bullet \ \, {\sf Gene \ \, discovery}/{\sf GWAs}$
- Species Definition

- $\bullet \ \, {\sf Gene \ \, discovery}/{\sf GWAs}$
- Species Definition
- Subspecies/specific subgroup definition

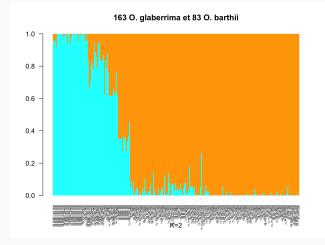

- $\bullet~{\sf Gene~discovery}/{\sf GWAs}$
- Species Definition
- Subspecies/specific subgroup definition
- Global genotyping (for breeding in agriculture e.g.)

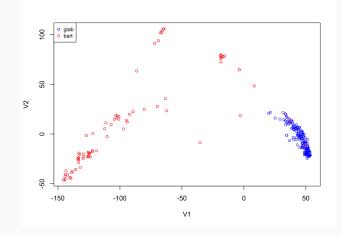
- Gene discovery/GWAs
- Species Definition
- Subspecies/specific subgroup definition
- Global genotyping (for breeding in agriculture e.g.)
- Genomic Ecology (Transposable elements, etc...)

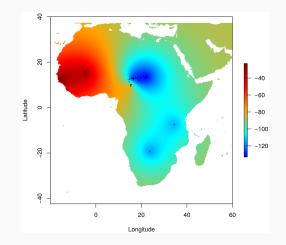

Example in GWAs & Population Genomics

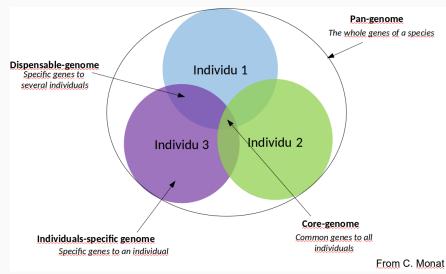


Example in GWAs & Population Genomics

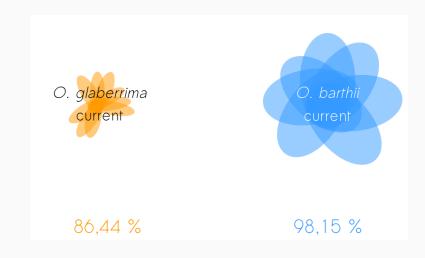


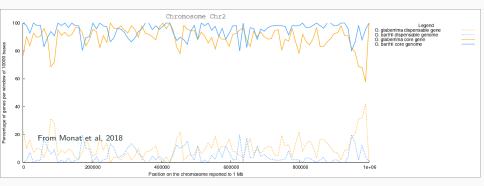

From Orjuela et al, 2014


From Cubry et al, 2018

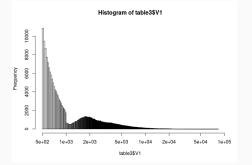


From Cubry et al, 2018





From Monat et al, 2016


Pangenomic

Some really recent results...

Table 3

	Valid Scaffolds	Not Valid Scaffolds	Not Referenced Scaffolds
Number of sequences	48223	16672	93
Minimal size	200	201	202
Maximal size	86103	90835	3041
Mean size	4110	6087	447
Median size	1942	2592	320
Number of functionally annotated gene model	10685	2147	2
Number of GO	23634	4817	4

Micro-Collinearity Statistics for CG14 vs. TOG5681

Sizes are given in bp.

From Monat et al, 2017

• Level of expression in different conditions or in different individuals

- Level of expression in different conditions or in different individuals
- Variation in sequences

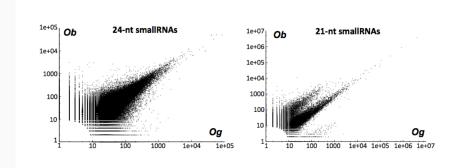
- Level of expression in different conditions or in different individuals
- Variation in sequences
- Variation of splicing

- Level of expression in different conditions or in different individuals
- Variation in sequences
- Variation of splicing
- Variation of editing

- Level of expression in different conditions or in different individuals
- Variation in sequences
- Variation of splicing
- Variation of editing
- Detection of putative coding/active sequence

• Level of expression in different conditions or in different individuals

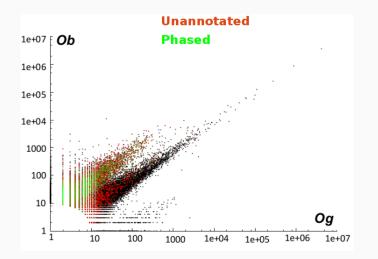
- Level of expression in different conditions or in different individuals
- Variation in sequences



- Level of expression in different conditions or in different individuals
- Variation in sequences
- Variation in specific forms

- Level of expression in different conditions or in different individuals
- Variation in sequences
- Variation in specific forms
- Detection of new forms

From Ta et al, 2015


Example in smallRNA Transcriptomics

Example in smallRNA Transcriptomics

From Ta et al, 2015

• Pre-diagnostic (Genetic illness, putative resistance)

- Pre-diagnostic (Genetic illness, putative resistance)
- Tumor sequencing

- Pre-diagnostic (Genetic illness, putative resistance)
- Tumor sequencing
- Viral sequencing

- Pre-diagnostic (Genetic illness, putative resistance)
- Tumor sequencing
- Viral sequencing
- Risk Assessement

- Pre-diagnostic (Genetic illness, putative resistance)
- Tumor sequencing
- Viral sequencing
- Risk Assessement
- Epidemiological Studies

Metagenomics at large

THE METAGENOMICS PROCESS

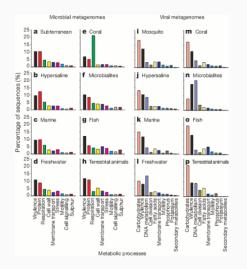
Extract all DNA from microbial community in sampled environment

DETERMINE WHAT THE GENES ARE (Sequence-based metagenomics)

- Identify genes and metabolic pathways
- Compare to other communities
- and more...

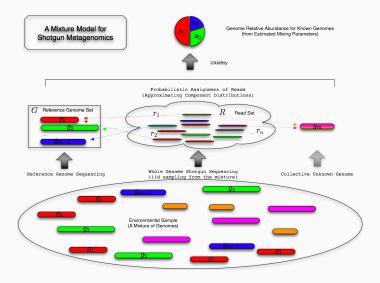
DETERMINE WHAT THE GENES DO (Function-based metagenomics)

- Screen to identify functions of interest, such as vitamin or antibiotic production
- Find the genes that code for functions of interest
- and more...



From Tara Ocean website

Functional Metagenomics



From Dinsdale et al, 2008

Barcoding

• Real-time Transcriptomics

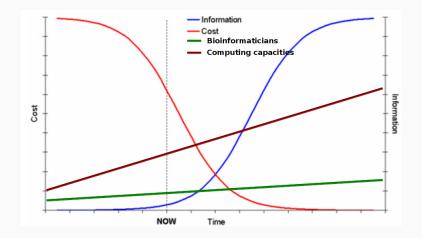
- Real-time Transcriptomics
- Single-Cell Genomics -> DONE in 2014

- Real-time Transcriptomics
- Single-Cell Genomics -> DONE in 2014
- Single-Cells Transcriptomics (and smallRNA) -> DONE in 2015

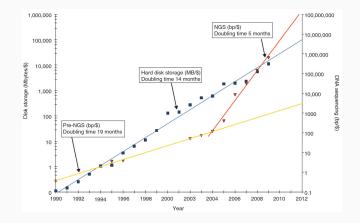
- Real-time Transcriptomics
- Single-Cell Genomics -> DONE in 2014
- Single-Cells Transcriptomics (and smallRNA) -> DONE in 2015
- Personal Genomics medicine (ethical problems...) -> Available

- Real-time Transcriptomics
- Single-Cell Genomics -> DONE in 2014
- Single-Cells Transcriptomics (and smallRNA) -> DONE in 2015
- Personal Genomics medicine (ethical problems...) -> Available
- And any new ideas you will have ...

• NGS technologies change the way of abording Biology



- NGS technologies change the way of abording Biology
- A lot of Possibilities, a lot of limits


- NGS technologies change the way of abording Biology
- A lot of Possibilities, a lot of limits
- The main limit is no more Sequence, but Sample acquisition and Data treatment

... From Data Rarity to Data Deluge

From L. Stein, 2010

Be Careful to data drowning!

Thanks for your attention

