

NGS sequencing

Dr Francois Sabot & Christine Tranchant-Dubreuil 8th of October, 2018

IRD - UMR DIADE

Introduction

A little history of sequencing...

... From Data Rarity to Data Deluge

Decoding for cents

Cost of determining 1m bases of a DNA sequence Log scale, \$

From The economist

DNA Sequencing Economics

From Bussiness Insider

... From Data Rarity to Data Deluge

4

• Genetic diversity

- Genetic diversity
- Gene discovery

- Genetic diversity
- Gene discovery
- Genomic structure

- Genetic diversity
- Gene discovery
- Genomic structure
- Contamination/pathogen detection

- Genetic diversity
- Gene discovery
- Genomic structure
- Contamination/pathogen detection
- Metagenomic

- Genetic diversity
- Gene discovery
- Genomic structure
- Contamination/pathogen detection
- Metagenomic
- Pangenomic

- Genetic diversity
- Gene discovery
- Genomic structure
- Contamination/pathogen detection
- Metagenomic
- Pangenomic
- And many other things...

Methods

- 2^{nd} Generation Sequencing
 - DNA fragmentation (short)
 - Matrix amplification
 - Short reads
 - Limited error rate
 - High throughput

- 2nd Generation Sequencing
 - DNA fragmentation (short)
 - Matrix amplification
 - Short reads
 - Limited error rate
 - High throughput

- 3rd Generation Sequencing
 - DNA fragmentation (long)
 - NO MATRIX AMPLIFICATION
 - Long reads
 - Important error rate
 - Medium throughput

- 2nd Generation Sequencing
 - DNA fragmentation (short)
 - Matrix amplification
 - Short reads
 - Limited error rate
 - High throughput

454 IonTorrent Illumina

- 3rd Generation Sequencing
 - DNA fragmentation (long)
 - NO MATRIX AMPLIFICATION
 - Long reads
 - Important error rate
 - Medium throughput

2nd Generation Sequencing

- DNA fragmentation (short)
- Matrix amplification
- Short reads
- Limited error rate
- High throughput

454 IonTorrent Illumina

- 3rd Generation Sequencing
 - DNA fragmentation (long)
- PacificBiosciences Oxford Nanopore
- NO MATRIX AMPLIFICATION
- Long reads
- Important error rate
- Medium throughput

Advantages : Length (400 - 750 bases) Limits :

- Homopolymers
- Error rate (15%, non random)
- Output volume
- Price

Roche has stopped 454 dev, dying technology

Illumina

11

Illumina

build double-stranded bridges on the solidphase substrate.

templates anchored to the substrate.

stranded DNA are generated in each channel of the flow cell.

terminators, primers and DNA polymerase enzyme to the flow cell.

flow cell. Record the identity of the first base for each duster.

reversible terminators and enzyme to the flow cell.

Illumina

After laser excitation, collect the image data as before. Record the identity of the second base for each duster.

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at time.

Align data, compare to a reference, and identify sequence differences.

- Output volume (200+ millions of 150b reads, HiSeq 2500)
- Accuracy (99.99 %)
- Run is cheap
- MySeq is cheap (around 60 000 USD per machine)
- $\mbox{Limits}\,:\,\mbox{Size}\,(150\,+\,150$ in HiSeq4000 and X, but 400 for \$MySeq)

- Price (less than 200 USD per run)
- Lab sized machine (around 80 000 USD per machine)

Limits : Error rate (15%)

- Price: around 5,000 USD/run (machine at 125k USD)
- Illumina quality data

Limits : "Limited" length of long reads (10kb max)

Pacific BioSciences

Pacific BioSciences

- Length (mean 10kb, more than 40kb regularly)
- Single strand direct sequencing, no amplification bias

Limits :

- Error Rate (15%, but can be corrected)
- Machine size and price (more than 900 000 USD)
- Run price (600 USD for 500 Mb)

Oxford Nanopore

From Circulation Research

- No Amplification
- NO SYNTHESIS
- Very Long Length

Oxford Nanopore

From Circulation Research

- No Amplification
- NO SYNTHESIS
- Very Long Length

- Magnetic fields variation measure
- Minion: USB key sized

From Nature Biotechnology

- Length (mean 10-50kb, more than 2Mb reported)
- Bases Modification detection in real-time
- Single strand direct sequencing
- Machine cheap (2,000 USD for Minion)
- Run cheap (1,000 USD for 30Gb by now minimum)
- Fast: 15mn library, 48-72h run

Limits :

- Error Rate (6-9%, but can be corrected)
- Quality of DNA limits the sequencing
- Heu...

- $\bullet\,$ SOLiD $\dagger,$ because of too small sequence size and no new dev.
- Helicos †, because of too many errors and trouble in chemistry
- Polonator †, because of too small sequence size
- DNA nanoball sequencing (Complete Genomics[©]), nobody uses it but CG group.
- Single Sequence magnetic bead (ongoing development)
- Transmission electron microscopy DNA sequencing (ongoing development)

Various Technologies, length, cost, outputs...

		Comp	arison or nign-throughpu	t sequencing me	thodstoonor		
Method	Read length	Accuracy (single read not consensus)	Reads per run	Time per run	Cost per 1 million bases (in US\$)	Advantages	Disadvantages
Single-molecule real-time sequencing (Pacific Biosciences)	30.000 bp (N50); maximum read length >100.000 bases ^{[65][66][67]}	87% raw-read accuracy ^[68] (> 99.999% with CCS or consensus)	500,000 per Sequel SMRT cell, 10-20 gigabases ^[65] [69][70]	30 minutes to 20 hours ^{[65][71]}	\$0.05-\$0.08	Fast. Detects 4mC, 5mC, 6mA. ^[72]	Moderate throughput. Equipment can be very expensive.
Ion semiconductor (Ion Torrent sequencing)	up to 600 bp ^[73]	99.6% ^[74]	up to 80 million	2 hours	\$1	Less expensive equipment. Fast.	Homopolymer errors.
Pyrosequencing (454)	700 bp	99.9%	1 million	24 hours	\$10	Long read size. Fast.	Runs are expensive. Homopolymer errors.
Sequencing by synthesis (Illumina)	MiniSeq, NextSeq: 75-300 bp; MiSeq: 50-600 bp; HiSeq 2500: 50-500 bp; HiSeq 3/4000: 50-300 bp; HiSeq X: 300 bp	99.9% (Phred30)	MiniSeq/MiSeq: 1-25 Million; NextSeq: 130-00 Million, HiSeq 2500: 300 million - 2 billion, HiSeq 3/4000 2.5 billion, HiSeq X: 3 billion	1 to 11 days, depending upon sequencer and specified read length ^[75]	\$0.05 to \$0.15	Potential for high sequence yield, depending upon sequencer model and desired application.	Equipment can be very expensive. Requires high concentrations of DNA.
Sequencing by ligation (SOLiD sequencing)	50+35 or 50+50 bp	99.9%	1.2 to 1.4 billion	1 to 2 weeks	\$0.13	Low cost per base.	Slower than other methods. Has issues sequencing palindromic sequences. ^[76]
Nanopore Sequencing	Dependent on library prep, not the device, so user chooses read length. (up to 500 kb reported)	~92-97% single read (up to 99.96% consensus)	dependent on read length selected by user	data streamed in real time. Choose 1 min to 48 hrs	\$500-999 per Flow Cell, base cost dependent on expt	Longest individual reads. Accessible user community. Portable (Palm sized).	Lower throughput than other machines. Single read accuracy in 90s.
Chain termination (Sanger sequencing)	400 to 900 bp	99.9%	N/A	20 minutes to 3 hours	\$2400	Useful for many applications.	More expensive and impractical for larger sequencing projects. This method also requires the time consuming step of plasmid cloning or PCR.

• DNA from plant, animal, microbial...

- DNA from plant, animal, microbial...
- RNA from various sources

- DNA from plant, animal, microbial...
- RNA from various sources
- smallRNA, idem

- DNA from plant, animal, microbial...
- RNA from various sources
- smallRNA, idem
- Environmental sample

• Organite DNA (mitochondria, chloroplast)

- Organite DNA (mitochondria, chloroplast)
- Subsample RNA (exon capture, 16S capture for Barcoding)

- Organite DNA (mitochondria, chloroplast)
- Subsample RNA (exon capture, 16S capture for Barcoding)
- Viral sample from infected tissue

- Organite DNA (mitochondria, chloroplast)
- Subsample RNA (exon capture, 16S capture for Barcoding)
- Viral sample from infected tissue
- As many as you can extract...

Thanks for your attention

