

Mapping, SNP & SV

Christine Tranchant-Dubreuil & Francois Sabot October, 2018

IRD - UMR DIADE

• Quality control of NGS data

- Quality control of NGS data
- Learn to manipulate NGS data

- Quality control of NGS data
- Learn to manipulate NGS data
- Having a critical look on Mapping

- Quality control of NGS data
- Learn to manipulate NGS data
- Having a critical look on Mapping
- Learn to launch a Calling and having a critical look

- Quality control of NGS data
- Learn to manipulate NGS data
- Having a critical look on Mapping
- Learn to launch a Calling and having a critical look
- Learn the basic of Structural Variations

What is a Cluster ?

What is a Cluster ?

• A logical unit composed of multiple servers

What is a Cluster ?

• Will work as a unique powerful machine

What is a Cluster ?

- A logical unit composed of multiple servers
- Will work as a unique powerful machine
- HPC: High-Performance Computing

- A logical unit composed of multiple servers
- Will work as a unique powerful machine
- HPC: High-Performance Computing
- Higher storage capacity

- A logical unit composed of multiple servers
- Will work as a unique powerful machine
- HPC: High-Performance Computing
- Higher storage capacity
- Higher reliability

What is a Cluster ?

- A logical unit composed of multiple servers
- Will work as a unique powerful machine
- HPC: High-Performance Computing
- Higher storage capacity
- Higher reliability
- Higher resources availability

• The Master node:

N.

- The Master node:
 - Users connect on it

N.

- The Master node:
 - Users connect on it
 - Schedules jobs

- The Master node:
 - Users connect on it
 - Schedules jobs
 - Manages resources and priorities

- The Master node:
 - Users connect on it
 - Schedules jobs
 - Manages resources and priorities
- The Computing Nodes:

- The Master node:
 - Users connect on it
 - Schedules jobs
 - Manages resources and priorities
- The Computing Nodes:
 - Receive job instructions

- The Master node:
 - Users connect on it
 - Schedules jobs
 - Manages resources and priorities
- The Computing Nodes:
 - Receive job instructions
 - Perform jobs

- The Master node:
 - Users connect on it
 - Schedules jobs
 - Manages resources and priorities
- The Computing Nodes:
 - Receive job instructions
 - Perform jobs
 - Send to Master the results
- The NAS:

- The Master node:
 - Users connect on it
 - Schedules jobs
 - Manages resources and priorities
- The Computing Nodes:
 - Receive job instructions
 - Perform jobs
 - Send to Master the results
- The NAS:
 - Store data for computing

The FASTQ Format

SSSSSSSSSSSSSS	ssssssssssssss	sssssss	ssssss		
	X)	XXXXXXX	XXXXXXXXXXXXXXX	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	(
			111111111111		[
		JJ			J
		LLLLLL			
!"#\$%&'()*+,/0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopgrstuvwxyz{ }-					
1	i.	1	1		
33	59	64	73	104	1 126
0			40		
	-5.	0	9)
		0	9)
		3	9)
0.2					
S - Sanger	Phred+33,	raw rea	ds typically	(0, 40)	
X - Solexa	Solexa+64,	raw rea	ds typically	(-5, 40)	
I - Illumina 1.3	3+ Phred+64,	raw rea	ds typically	(0, 40)	
J - Illumina 1.9	5+ Phred+64,	raw rea	ds typically	(3, 40)	
with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)					
(Note: See discussion above).					
L - Illumina 1.8	8+ Phred+33,	raw rea	ds typically	(0, 41)	

The **QPHRED** Value

р

7

1. Connect to the cluster:

ssh -X formationX@41.82.52.216

- 1. Connect to the cluster: ssh -X formationX@41.82.52.216
- 2. Launch a QRSH command: *qrsh*

- 1. Connect to the cluster: ssh -X formationX@41.82.52.216
- 2. Launch a QRSH command: *qrsh*
- Create your folder in scratch and go in it: mkdir /scratch/formationX cd /scratch/formationX

- Connect to the cluster: ssh -X formationX@41.82.52.216
- 2. Launch a QRSH command: *qrsh*
- Create your folder in scratch and go in it: mkdir /scratch/formationX cd /scratch/formationX
- 4. Transfer the data from nas using SCP: scp -r master:/data/FORMATION/2018/TPsnpSV .

• Use FastQC on each data fastqc FILE.fastq

- Use FastQC on each data fastqc FILE.fastq
- What is the global quality of data ?

- Use FastQC on each data fastqc FILE.fastq
- What is the global quality of data ?
- For that you have to download it from your scratch to master then your own computer...

Why Cleaning Data ?

• Removing Adapters and Tags

Why Cleaning Data ?

- Removing Adapters and Tags
- Removing low quality bases (only conserving 20+ QPHRED value bases)

Why Cleaning Data ?

- Removing Adapters and Tags
- Removing low quality bases (only conserving 20+ QPHRED value bases)
- Removing contaminants (rRNA genes, organite data,...)

• FASTX-tools toolbox

- FASTX-tools toolbox
- CutAdapt

- FASTX-tools toolbox
- CutAdapt
- Trimmomatic

- FASTX-tools toolbox
- CutAdapt
- Trimmomatic
- Home-made Scripts based on QPHRED scale encoding

From unmapped reads to true genetic variation in next-generation sequencing data

Principe of SNP calling

1. Mapping: bwa aln/sampe, bwa mem, bowtie2, ...

- 1. Mapping: bwa aln/sampe, bwa mem, bowtie2, ...
- 2. Cleaning mapping: samtools, picard-tools,...

- 1. Mapping: bwa aln/sampe, bwa mem, bowtie2, ...
- 2. Cleaning mapping: samtools, picard-tools,...
- 3. Realigning and Duplicates: GATK, picard-tools,...

- 1. Mapping: bwa aln/sampe, bwa mem, bowtie2, ...
- 2. Cleaning mapping: samtools, picard-tools,...
- 3. Realigning and Duplicates: GATK, picard-tools,...
- 4. SNP calling and Cleaning: GATK,...

- 1. Mapping: bwa aln/sampe, bwa mem, bowtie2, ...
- 2. Cleaning mapping: samtools, picard-tools,...
- 3. Realigning and Duplicates: GATK, picard-tools,...
- 4. SNP calling and Cleaning: GATK,...

Between 8 and 15 different commands...

Problems with manual launches

- Long
- Fastidious
- Error prone
- Tracability and reproducibilty not ensured

Problems with manual launches

- Long
- Fastidious
- Error prone
- Tracability and reproducibilty not ensured

 $\textbf{Solution} \Longrightarrow \mathsf{Workflow} \ \mathsf{Manager}$

TOC-C-Le Tools for Generic NGS analysis

A framework to quickly build pipelines and to perform large-scale NGS analysis

Christine Tranchant-Dubreuil christine.tranchant@ird.fr

TOG-G-Le

 A toolbox to perform large-scale NGS analyses

19 modules, 120 functions 40 open-source tools

TOG-G-Le

 A toolbox to perform large-scale NGS analyses

19 modules, 120 functions 40 open-source tools

Version 2 published in BMC bioinformatics

RESEARCH

TOGGLE: Toolbox for generic NGS analyses

Cecile Monat^{1+†}, Christine Tranchant-Dubreuil¹1°, Ayité Kougbeadjo², Cédric Farcy², Mawussé Agbessi¹, Maryline Summo² and Francois Sabot¹

Data preprocessing

Fastqc, Cutadapt FastxTrimmer Stack process_radstats

Structural Variations

MindTheGap, BreakDancer, Pindel

RNA-seq Assembly

Trinity TGI-CL

Mapping

Bwa aln, sampe/ samse Bwa mem Tophat2 TOG-G-Le

SNP calling/ filtering

SAMtools, GATK, VarScan, SNPEff

SAM/BAM management

picardTools, SAMtools, GATK

Data preprocessing

Fastqc, Cutadapt FastxTrimmer Stack process_radstats

Structural Variations

MindTheGap, BreakDancer, Pindel

RNA-seq Assembly

TransAbyss, Trinity TGI-CL

Mapping

Bwa aln, sampe/ samse Bwa mem Tophat2 TOG-G-Le

SNP calling/ filtering

SAMtools, GATK, VarScan, SNPEff

SAM/BAM management

picardTools, SAMtools, GATK

https://github.com/SouthGreenPlatform/TOGGLE

TOGG

Version 2	>	Version 3

From hard-coded pipelines To a bioinformatic pipeline framework

Biologists create their own pipeline through an easy and user-friendly approach

How to perform an analysis with TOC-Cee?

A command-line based pipeline framework

A single command line

toggleGenerator.pl -d DIR-c FILE -o DIR

What does $T \bigcirc c \in e$ need to run ?

- An input directory (with fastq, sam/bam, vcf files)
- The name of output directory used to store the data generated by the analyses
- A unique and simple configuration file to design the pipeline and define software parameters.
- Optional arguments : reference file, annotation...

\$order

1=fastqc 2=cutadapt 3=bwa mem 4=picardToolsSortSam 5=samToolsView 1000=gatkHaplotypeCaller 1001=gatkVariantFiltration

\$cutadapt

-q 30 -m 35

\$bwa mem

-n 5

•••

\$sge

-q bioinfo.q -b Y

\$order

- 1=fastqc
- 2=cutadapt
- 3=bwa mem
- 4=picardToolsSortSam
- 5=samToolsView
- 1000=gatkHaplotypeCaller
- 1001=gatkVariantFiltration

Create your own workflow

- The workflow order
- The list of softwares to run

One line = the step followed by the software's name

TOGGLe Create your workflow

Create your workflow

TOGGLe

\$order

1=fastqc 2=cutadapt 3=bwa mem 4=picardToolsSortSam 5=samToolsView 1000=gatkHaplotypeCaller 1001=gatkVariantFiltration

\$cutadapt

-q 30 -m 35

\$bwa mem

-n 5

••••

\$sge -q bioinfo.q -b Y

Software parameters

One tag per software (\$softwareName) followed by the list of options

• Create a **TOGGLe** configuration file with as order:

- 1. bwa aln
- 2. bwa sampe
- 3. picardtools sortsam
- 4. samtools view
- 5. samtools index
- 6. gatkindelrealigner
- 7. picardtools markduplicates

• Create a **TOGGLe** configuration file with as order:

- 1. bwa aln
- 2. bwa sampe
- 3. picardtools sortsam
- 4. samtools view
- 5. samtools index
- 6. gatkindelrealigner
- 7. picardtools markduplicates
- Add the options...

• Create a **TOGGLe** configuration file with as order:

- 1. bwa aln
- 2. bwa sampe
- 3. picardtools sortsam
- 4. samtools view
- 5. samtools index
- 6. gatkindelrealigner
- 7. picardtools markduplicates
- Add the options...
- Ok, we help... Look to configuration files in /data/FORMATION/2018/TPsnpSV

• Download Tablet (use Google and Tablet+NGS)

- Download Tablet (use Google and Tablet+NGS)
- Transfer the BAMs and the reference from the node to the master then to your local computer (use scp at each point)

- Download Tablet (use Google and Tablet+NGS)
- Transfer the BAMs and the reference from the node to the master then to your local computer (use scp at each point)
- Open Tablet, look at the mapping and try to find SNPs

• Pick up all last BAM file (*MarkDuplicates* steps)

- Pick up all last BAM file (*MarkDuplicates* steps)
- Launch a **TOGGLe** with *1000=gatkUnifiedGenotyper*

- Pick up all last BAM file (*MarkDuplicates* steps)
- Launch a **TOGGLe** with *1000=gatkUnifiedGenotyper*
- Try to launch a **TOGGLe** from *FASTQ* to *VCF*

Туре	Tag	Description
HD - header	VN*	File format version.
	SO	Sort order. Valid values are: unsorted, queryname or coordinate.
	GO	Group order (full sorting is not imposed in a group). Valid values are: none, query or reference.
sQ -	SN*	Sequence name. Unique among all sequence records in the file. The value of this field is used in alignment records.
Sequence	LN*	Sequence length.
dictionary	AS	Genome assembly identifier. Refers to the reference genome assembly in an unambiguous form. Example: HG18.
	м5	MD5 checksum of the sequence in the uppercase (gaps and space are removed)
	UR	URI of the sequence
	SP	Species.
RG -	ID*	Unique read group identifier. The value of the ID field is used in the RG tags of alignment records.
read group	SM*	Sample (use pool name where a pool is being sequenced)
	LB	Library
	DS	Description
	PU	Platform unit (e.g. lane for Illumina or slide for SOLiD); should be a full, unambiguous identifier
	PI	Predicted median insert size (maybe different from the actual median insert size)
	CN	Name of sequencing center producing the read.
	DT	Date the run was produced (ISO 8601 date or date/time).
	PL	Platform/technology used to produce the read.
PG	ID*	Program name
-	VN	Program version
Program	CL	Command line
CO - comment		One-line text comments

Туре	Tag		Description										
HD - header	VN*	File format version	on.										
	so	Sort order. Valid	values	are:	unsor	ted,	quei	yname or coord	ina	te.			
	GO	Group order (full	sorting	g is no	ot imp	ose	d in a	a group). Valid v	alu	es ar	e: nor	ne, query or refere	nce.
SQ SN* Sequence name. Unique among all sequence records in the file. Th - in alignment records.										The v	alue of this field is	used	
Sequence	LN*	Sequence length.											
dictionary	AS	Genome assem form. Example: H	enome assembly identifier. Refers to the reference genome assembly in an unambiguous orm. Example: HG18.										
	М5	MD5 checksum	D5 checksum of the sequence in the uppercase (gaps and space are removed)										
	UR	URI of the seque	RI of the sequence										
	SP	Species.	pecies.										
RG -	ID*	Jnique read group identifier. The value of the ID field is used in the RG tags of alignment ecords.											
read group	SM*	Sample (use pool name where a pool is being sequenced)											
	LB	Library											
	DS	Description											
	PU	Platform unit (e.ç	g. lane	for III	umina	a or s	slide	for SOLiD); sho	uld	be a	ι full, ι	inambiguous iden	tifier
	PI	Predicted me											
	CN	Name of seq	HD V	N:1.	3 S():co	oro	dinate					
	DT	Date the run	SQ S	N:re	f Ll	1:45	5						
	PL	Platform/tect r	001	163	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGA	ATACTG
PG	ID*	Program nar 🛛 🕯	002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGA	ATA
-	VN	Program vers 1	003	0	ref	9	30	5H6M	*	0	0	AGCTAA *	NM:i
riogram	CL	Command lir 1	004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	
CO - comment		One-line text r	003	16	ref	29	30	6H5M	*	0	0	TAGGC *	NM:i
		r	001	83	ref	37	30	9M	=	7	-39	CAGCGCCAT	

Col	Name	Desc									
1	QNAME	Query NAME of the read									
2	FLAG	bitwise FLAG (pairing, st									
3	RNAME	Reference sequence NA									
4	POS	1-based leftmost POSitio									
5	MAPQ	MAPping Quality (Phred-									
6	CIGAR	extended CIGAR string (
7	NRNM	Mate Reference NaMe (`									
8	MPOS	1-based leftmost Mate Pe	1-based leftmost Mate POSition								
9	ISIZE	inferred Insert SIZE									
10	SEQ	query SEQuence on the reference	0HD VN:1.3 SO:coordina 0SQ SN:ref LN:45 r001 163 ref 7 30 8M2 r002 0 ref 0 30 256	1te 214M1D3M = 3							
11	QUAL	query QUALity (ASCII-33	r003 0 ref 9 30 5H6	M *							
			r004 0 ref 16 30 6M1 r003 16 ref 29 30 6H5 r001 83 ref 37 30 9M	.4N5M * M * =							

Advanced Linux Session : NGS analysis - A. Dereeper, C. Tranchant-Dubreuil | p. 19

39 TTAGATAAAGGATACTG * O AAAAGATAAGGATA O AGCTAA

-39 CAGCGCCAT

NM:i:1 * O ATAGCTTCAGC O TAGGC

NM: i:0 *

bioinformatics platform

0

Suppose we have the following alignment with bases in lower cases clipped from the alignment. Read r001/1 and r001/2 constitute a read pair; r003 is a chimeric read; r004 represents a split alignment.

Coor	12345678901234 5678901234567890123456789012345	
ref	AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT	
+r001/1	TTAGATA AAGGATA *CTG	
+r002	aaaAGATAA*GGATA	
+r003	gcctaAGCTAA	
+r004	ATAGCTTCAGC	
-r003	ttagctTAGGC	
-r001/2	CAGCGCCAT	

Advanced Linux Session : NGS analysis - A. Dereeper, C. Tranchant-Dubreuil | p. 20

Suppose we have the following alignment with bases in lower cases clipped from the alignment. Read r001/1 and r001/2 constitute a read pair; r003 is a chimeric read; r004 represents a split alignment.

Coor	12345678901234 5678901234567890123456789012345	
ref	AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT	
+r001/1	TTAGATAAAGGATA*CTG	
+r002	aaaAGATAA*GGATA	
+r003	gcctaAGCTAA	
+r004	ATAGCTTCAGC	
-r003	ttagctTAGGC	
-r001/2	CAGCGCCAT	

The corresponding SAM format is:

@HD VN:1.3 SO:coordinate											
@SQ S	SN:r	ef Ll	N:45	5							
r001	163	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGA	TACTG *	
r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGA	* AT	
r003	0	ref	9	30	5H6M	*	0	0	AGCTAA *	NM:i:1	
r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*	
r003	16	ref	29	30	6H5M	*	0	0	TAGGC *	NM:i:O	
r001	83	ref	37	30	9M	=	7	-39	CAGCGCCAT	*	

Advanced Linux Session : NGS analysis - A. Dereeper, C. Tranchant-Dubreuil | p. 21

the SAM bitwise FLAG

SAM format: FLAG field

numeric	binary	description
1	00000001	template has multiple fragments in sequencing
2	00000010	each fragment properly mapped according to aligner
4	00000100	fragment is unmapped
8	00001000	mate is unmapped
16	00010000	sequence is reverse complemented
32	00100000	sequence of mate is reversed
64	01000000	is first fragment in template
128	10000000	is second fragment in template

From J. Aerts, in SlideShare

pour le Développement

The Variant Call Format (VCF) used in bioinformatics for storing gene sequence variations

Advanced Linux Session : NGS analysis - A. Dereeper, C. Tranchant-Dubreuil | p. 23

VCF file format for Variant Call Format

Institut de Recherche pour le Développement

##file:	f#11leformat=VCFv4.1										
##file	#fileDate=20090805										
##sour	#source=myImputationProgramV3.1										
##refe:	#reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta										
##cont:	#contiq= <id=20,length=62435964,assembly=b36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="homo sapiens",taxonomy="x"></id=20,length=62435964,assembly=b36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="homo>										
##phas:	/#phasing=partial										
##INFO	- <id=ns,n< td=""><td>umber=1,T</td><td>pe=Inte</td><td>eger, Desc</td><td>ripti</td><td>lon="Nur</td><td>nber of Samples With Data"></td><td></td><td></td><td></td><td></td></id=ns,n<>	umber=1,T	pe=Inte	eger, Desc	ripti	lon="Nur	nber of Samples With Data">				
##INFO	- <id=dp.n< td=""><td>umber=1,T</td><td>vpe=Inte</td><td>eger, Desc</td><td>ripti</td><td>on="Tot</td><td>al Depth"></td><td></td><td></td><td></td><td></td></id=dp.n<>	umber=1,T	vpe=Inte	eger, Desc	ripti	on="Tot	al Depth">				
##INFO	- <id=af.n< td=""><td>umber=A.T</td><td>vpe=Floa</td><td>at, Descr:</td><td>ption</td><td>="Allel</td><td>le Frequency"></td><td></td><td></td><td></td><td></td></id=af.n<>	umber=A.T	vpe=Floa	at, Descr:	ption	="Allel	le Frequency">				
##INFO	- <id=aa.n< td=""><td>umber=1.T</td><td>vpe=Str:</td><td>ing, Desci</td><td>riptic</td><td>on="Ance</td><td>stral Allele"></td><td></td><td></td><td></td><td></td></id=aa.n<>	umber=1.T	vpe=Str:	ing, Desci	riptic	on="Ance	stral Allele">				
##INFO	<id=db, n<="" td=""><td>umber=0,T</td><td>pe=Flag</td><td>, Descrip</td><td>otion=</td><td>dbSNP</td><td>membership, build 129"></td><td></td><td></td><td></td><td></td></id=db,>	umber=0,T	pe=Flag	, Descrip	otion=	dbSNP	membership, build 129">				
##INFO	- <id=h2,n< td=""><td>umber=0,T</td><td>vpe=Flad</td><td>, Descrip</td><td>tion=</td><td>"HapMan</td><td>2 membership"></td><td></td><td></td><td></td><td></td></id=h2,n<>	umber=0,T	vpe=Flad	, Descrip	tion=	"HapMan	2 membership">				
##FILT	R= <id=al< td=""><td>0,Descrip</td><td>tion="O</td><td>ality be</td><td>low 1</td><td>0"></td><td></td><td></td><td></td><td></td><td></td></id=al<>	0,Descrip	tion="O	ality be	low 1	0">					
##FILT	R= <td=85< td=""><td>0.Descrip</td><td>tion="Le</td><td>ess than</td><td>50% (</td><td>of sampl</td><td>es have data"></td><td></td><td></td><td></td><td></td></td=85<>	0.Descrip	tion="Le	ess than	50% (of sampl	es have data">				
##FORM	T= <td=gt< td=""><td>Number=1</td><td>Type=St</td><td>tring.Des</td><td>script</td><td>ion="Ge</td><td>anotype"></td><td></td><td></td><td></td><td></td></td=gt<>	Number=1	Type=St	tring.Des	script	ion="Ge	anotype">				
##FORM	AT= <id=gc< td=""><td>Number=1</td><td>Type=I</td><td>teger.De</td><td>escrit</td><td>otion="0</td><td>Senotype Quality"></td><td></td><td></td><td></td><td></td></id=gc<>	Number=1	Type=I	teger.De	escrit	otion="0	Senotype Quality">				
##FORM	AT= <id=de< td=""><td>Number=1</td><td>Type=I</td><td>teger.De</td><td>escrit</td><td>otion="H</td><td>Read Depth"></td><td></td><td></td><td></td><td></td></id=de<>	Number=1	Type=I	teger.De	escrit	otion="H	Read Depth">				
##FORM	T= <id=hc< td=""><td>Number=2</td><td>Type=I</td><td>teger.De</td><td>scrit</td><td>tion="H</td><td>Taplotype Quality"></td><td></td><td></td><td></td><td></td></id=hc<>	Number=2	Type=I	teger.De	scrit	tion="H	Taplotype Quality">				
#CHROM	POS	ID	REF	ALT	OUAL	FILTER	INFO	FORMAT	NA00001	NA00002	NA00003
20	14370	rs6054257	G	A	29	PASS	NS=3:DP=14:AF=0.5:DB:H2	GT:GO:DP:HO	0 0:48:1:51.51	110:48:8:51.51	1/1:43:5:
20	17330		T	A	3	σ10	NS=3:DP=11:AF=0.017	GT:GO:DP:HO	0 0:49:3:58.50	0 1:3:5:65.3	0/0:41:3
20	1110696	re6040355		G T	67	DAGG	NS=2:DD=10:AF=0 333 0 667:AA=T:DB	GT . CO . DP . HO	1 2.21.6.23 27	2 1.2.0.18 2	2/2.35.4
20	1230237		-		47	DACC	NG=3+DD=13+AA=T	GT .CO.DR .HO	010:54:7:56 60	0 0 . 48 . 4 . 51 51	0/0.61.2
20	1234567	migroget1	CTC	C CTCT	50	DACC	NS=3, DD=9, AA=C	GT.CO.DP	0/1.35.4	0/2.17.2	1/1.40.3/1
20	1204007	microsaci	010	0,0101		THUD	10-5, DI-5, AA-0	GI. GY: DF	0/1.33.4	0/2.1/.2	1/1.40:3 1

- Variation 1 : a good SNP
- Variation 2 : a possible SNP that has been filtered out because its quality is below 10
- Variation 3 : a site at which two alternate alleles are called, with one of them (T) being ancestral (possibly a reference sequencing error)
- Variation 4 : a site that is called monomorphic reference (i.e. with no alternate alleles)

Variation 5 : a microsatellite with two alternative alleles, one a deletion of 2 bases (TC), and the other an insertion of one base (T).

• Open Tablet, load BAM, reference and VCF (pick it on your local computer)

- Open Tablet, load BAM, reference and VCF (pick it on your local computer)
- Look for SNP and their mapping

- Open Tablet, load BAM, reference and VCF (pick it on your local computer)
- Look for SNP and their mapping
- Relaunch the same analyses removing one step or changing parameters...

• Using GATK Variant Filtration, a flag per filter

- Using GATK Variant Filtration, a flag per filter
- Depth filter:

DP<10 or DP>20000

- Using GATK Variant Filtration, a flag per filter
- Depth filter: DP<10 or DP>20000
- MQ0 filter:

MQ0 < 4 or MQ0 < 0.1 DP

- Using GATK Variant Filtration, a flag per filter
- Depth filter: DP<10 or DP>20000
- MQ0 filter: *MQ0 < 4 or MQ0 < 0.1 DP*
- QUAL filter:

QUAL < 200

- Using GATK Variant Filtration, a flag per filter
- Depth filter: DP<10 or DP>20000
- MQ0 filter: *MQ0 < 4 or MQ0 < 0.1 DP*
- QUAL filter: *QUAL < 200*
- SNPcluster filter: more than 3 SNP per 10b

The command is then...

- java -jar GenomeAnalysisTK.jar -T VariantFiltration
- -R REFERENCE.FASTA -V INPUT.VCF --filterExpression
- 'QUAL<200' --filterName 'LOW-QUAL' --filterExpression
- 'MQ0>=4 && ((MQ0/(1.0DP)) > 0.1)' --filterName
- 'LOW-MQO' --filterExpression 'DP<10' --filterName
- 'LOWDP' --clusterSize 3 --clusterWindowSize 10 --
- filterExpression 'DP>20000' --filterName 'HIGH-DP' -o
 OUTPUT.VCF

• Recoding with SNP PASS: vcftools --vcf FILEIN --remove-filtered-all --recode --recode-INFO-all --out FILEOUT

More filtering

- Recoding with SNP PASS: vcftools --vcf FILEIN --remove-filtered-all --recode --recode-INFO-all --out FILEOUT
- Missing data filtering: vcftools --vcf FILEIN --max-missing-count 12 --recode --recode-INFO-all --out FILEOUT

More filtering

- Recoding with SNP PASS: vcftools --vcf FILEIN --remove-filtered-all --recode --recode-INFO-all --out FILEOUT
- Missing data filtering: vcftools --vcf FILEIN --max-missing-count 12 --recode --recode-INFO-all --out FILEOUT
- MAF:

vcftools --vcf FILEIN --output FILEOUT --maf 0.1

More filtering

- Recoding with SNP PASS:
 vcftools --vcf FILEIN --remove-filtered-all
 --recode --recode-INFO-all --out FILEOUT
- Missing data filtering: vcftools --vcf FILEIN --max-missing-count 12 --recode --recode-INFO-all --out FILEOUT
- MAF:

vcftools --vcf FILEIN --output FILEOUT --maf 0.1

• Biallelic SNPs:

vcftools --vcf FILEIN --min-alleles 2 --max-alleles 2 --recode --recode-INFO-all --out FILEOUT

• *sNMF*: toll to estimate ancestry coefficients

- *sNMF*: toll to estimate ancestry coefficients
- Developed by E. Frichot and O. Francois, TIMC-IMAG

- *sNMF*: toll to estimate ancestry coefficients
- Developed by E. Frichot and O. Francois, TIMC-IMAG
- R and Command-line version

- *sNMF*: toll to estimate ancestry coefficients
- Developed by E. Frichot and O. Francois, TIMC-IMAG
- R and Command-line version
- Much faster than ADMIXTURE or STRUCTURE, as efficient

.

In your QRSH session, copy the files from /data/FORMATION/2018/TpPop in your /scratch folder, and follow these commands:

1. scp master:/data/FORMATION/2018/TpPop/sample.vcf

In your QRSH session, copy the files from /data/FORMATION/2018/TpPop in your /scratch folder, and follow these commands:

- 1. scp master:/data/FORMATION/2018/TpPop/sample.vcf
- 2. grep "#" sample.vcf > subsamples.vcf

.

In your QRSH session, copy the files from /data/FORMATION/2018/TpPop in your /scratch folder, and follow these commands:

- 1. scp master:/data/FORMATION/2018/TpPop/sample.vcf
- 2. grep "#" sample.vcf > subsamples.vcf
- 3. shuf -n 5000 sample.vcf | grep -v "#" > tmp.vcf

In your QRSH session, copy the files from /data/FORMATION/2018/TpPop in your /scratch folder, and follow these commands:

- 1. scp master:/data/FORMATION/2018/TpPop/sample.vcf
- 2. grep "#" sample.vcf > subsamples.vcf
- 3. shuf -n 5000 sample.vcf | grep -v "#" > tmp.vcf
- 4. cat tmp.vcf >> subsamples.vcf

.

1. vcf2geno subsamples.vcf test.geno

- 1. vcf2geno subsamples.vcf test.geno
- 2. for K in {1..10}; do echo K=\$K; sNMF -x test.geno
 -K \$K -c > test.\$K.log; done

- 1. vcf2geno subsamples.vcf test.geno
- 2. for K in {1..10}; do echo K=\$K; sNMF -x test.geno
 -K \$K -c > test.\$K.log; done
- 3. grep "Cross-Entropy (masked data):" test.*.log

- 1. vcf2geno subsamples.vcf test.geno
- 2. for K in {1..10}; do echo K=\$K; sNMF -x test.geno
 -K \$K -c > test.\$K.log; done
- 3. grep "Cross-Entropy (masked data):" test.*.log
- 4. Look at all files for the best Cross-Entropy value

Use this with e.g. CLUMPP to extract the figure

Example in Global Genotyping & Population Genomics

From Cubry et al, 2018

From Korbel et al, 2007

We can use **BreakDancer** (*Chen et al, 2009, Nature Methods*) **BE CAREFUL: if you do it, do it through QRSH and scp copy on /scratch!!**

• From the raw BAMs, launch:

/usr/local/breakdancer-1.1.2/perl/bam2cfg.pl *.bam > bamConf.cfg

We can use **BreakDancer** (*Chen et al, 2009, Nature Methods*) **BE CAREFUL: if you do it, do it through QRSH and scp copy on /scratch!!**

- From the raw BAMs, launch: /usr/local/breakdancer-1.1.2/perl/bam2cfg.pl *.bam > bamConf.cfg
- Launch the **BreakDancer** command:

/usr/local/breakdancer-1.1.2/cpp/breakdancer-max bamConf.cfg > breakDancer.out

We can use **BreakDancer** (*Chen et al, 2009, Nature Methods*) **BE CAREFUL: if you do it, do it through QRSH and scp copy on /scratch!!**

- From the raw BAMs, launch: /usr/local/breakdancer-1.1.2/perl/bam2cfg.pl *.bam > bamConf.cfg
- Launch the **BreakDancer** command:

/usr/local/breakdancer-1.1.2/cpp/breakdancer-max bamConf.cfg > breakDancer.out

• Check the results...

From Baker, 2012

Assembly

From Baker, 2012

Assembly

From Schatz, 2010

1. Download using *scp* the folder *TPassembly* in /data/FORMATION/2018/TPassembly

- 1. Download using *scp* the folder *TPassembly* in /data/FORMATION/2018/TPassembly
- Go in this folder and check the data in the *Ebola* folder. What are they ?

- 1. Download using *scp* the folder *TPassembly* in /data/FORMATION/2018/TPassembly
- Go in this folder and check the data in the *Ebola* folder. What are they ?
- 3. Check them using FASTQC

- 1. Download using *scp* the folder *TPassembly* in /data/FORMATION/2018/TPassembly
- Go in this folder and check the data in the *Ebola* folder. What are they ?
- 3. Check them using FASTQC
- 4. Use the *Abyss* tool to assemble the pair-end data

- 1. Download using *scp* the folder *TPassembly* in /data/FORMATION/2018/TPassembly
- Go in this folder and check the data in the *Ebola* folder. What are they ?
- 3. Check them using FASTQC
- 4. Use the *Abyss* tool to assemble the pair-end data
- 5. Use the **BLAST** tool to compare it to the **ebola.fasta** file as database

- 1. Download using *scp* the folder *TPassembly* in /*data/FORMATION/2018/TPassembly*
- Go in this folder and check the data in the *Ebola* folder. What are they ?
- 3. Check them using FASTQC
- 4. Use the *Abyss* tool to assemble the pair-end data
- 5. Use the **BLAST** tool to compare it to the **ebola.fasta** file as database
- Use the *MUSCLE* tool to align your assembly to the *ebola.fasta*

Thanks for your attention

