

Initiation HPC cluster

www.southgreen.fr

https://southgreenplatform.github.io/trainings

Présentation i-Trop

Julie ORJUELA-BOUNIOL¹, IE Bioinformaticienne 25% Ndomassi TANDO, IE Administrateur systeme 100% Animateur plateau

Aurore COMTE, IE Bioinformaticienne 20% Valérie NOEL, TCS Bioinformaticienne 25% Bruno GRANOUILLAC³, IE Systèmes d'information 20%

Christine TRANCHANT-DUBREUIL, IE Bioinformaticienne 20% Alexis DEREEPER², IE Bioinformaticien 20%

Développement de logiciels d'analyse et de Sl

Plateau bioinformatique

Assistance et support aux équipes

Formations au Sud et au Nord

ARCHITECTURE

- une unité logique de plusieurs serveurs
- une unique machine puissante
- •une puissance de calcul élevée
- Une plus grande capacité de stockage
- Une fiabilité supérieure
- Une plus grande disponibilité des ressources

- une unité logique de plusieurs serveurs
- une unique machine puissante
- •une puissance de calcul élevée
- Une plus grande capacité de stockage
- Une fiabilité supérieure
- Une plus grande disponibilité des ressources

- une unité logique de plusieurs serveurs
- une unique machine puissante
- •une puissance de calcul élevée
- Une plus grande capacité de stockage
- Une fiabilité supérieure
- Une plus grande disponibilité des ressources

Composants d'un cluster

• Noeud maître

Gère les ressources et les priorités des jobs

 Noeuds de calcul Ressources (CPU ou mémoire RAM)

Composants d'un cluster

Noeud maître

Gère les ressources et les priorités des jobs

 Noeuds de calcul Ressources (CPU ou mémoire RAM)

Serveur(s) NAS Stockage

• 1 Noeud Maître

master.univ-ouaga.bf

Rôle :

- Lancer et prioriser les jobs sur les nœuds de calcul
- Accessible depuis Internet
- Connexion :

ssh login@master.univ-ouaga.bf

• 1 Noeud Maître

master.univ-ouaga.bf

• 1 Noeud de Calcul

node0

Rôle :

- Lancer et prioriser les jobs sur les nœuds de calcul
- Accessible depuis Internet
- Connexion :

ssh login@master.univ-ouaga.bf

Rôle :

- Utilisé par le maître pour exécuter les jobs/calculs
- Pas accessible depuis Internet
- Nom: node0

Partitions disques sur le cluster

Etapes d'une analyse sur le cluster

Etape 1 salloc,srun ou sbatch

Etape 1: Connexion, sinfo

Aller sur le <u>Exercice 1</u> du github

partition	noeud	Caractéristiques RAM noeuds	Caractéristiques coeurs noeuds	Caractéristique partition
main	node0	256 Go	28 coeurs	Temps infini
short	node0	256 Go	28 coeurs	Limitée à 1 jour

Etapes d'une analyse sur le cluster

Etape 2: srun, partition

Aller sur l' <u>Exercice2</u> du github

Etapes d'une analyse sur le cluster

Copier les données depuis son ordinateur personnel vers le /home si les données à analyser ne sont pas sur le cluster

Transferts de données sur le cluster en temps normal

Transferts de données sur le cluster pour le tp

Etape3: filezilla

Aller sur l' <u>Exercice3</u> du github

Etapes d'une analyse sur le cluster

• Copie entre 2 serveurs distants :

scp -r source destination

• Syntaxe si la source est distante :

scp -r nom_serveur:/chemin/fichier_a_copier répertoire_local

• Syntaxe si la destination est distante :

scp -r /chemin/fichier_a_copier nomserveur:/chemin/répertoire_distant

Ex: scp -r master:/home/formationX/repertoire /tmp/formationX/

Etape4: scp vers noeuds

Aller sur l' <u>Exercice4</u> du github

- > Permet de choisir la version du logiciel que l'on veut utiliser
- Surpassent les variables d'environnement

- ➤ 5 types de commandes :
 - Voir les modules disponibles :

module avail

• Obtenir une info sur un module en particulier :

module whatis + module name

• Charger un module :

module load + modulename

• Lister les modules chargés :

module list

• Décharger un module :

module unload + modulename

• Décharger tous les modules :

Module purge

Etapes d'une analyse sur le cluster

Charger ses logiciels avec module environment

> Etape 5 module

Etape5: module environment

Aller sur l'<mark>Exercice5</mark> du github

- Charger la version du logiciel à lancer
- Lancer l'analyse des données

\$~ commande <options> <arguments>

Avec *commande*: la commande à lancer

- Exécuter une commande bash via srun
- Lance la commande sur un noeud
- On utilise la commande:

\$~ **srun** *"commande"*

Avec *commande*: la commande à lancer

Etapes d'une analyse sur le cluster

Etape6: lancer l'analyse

Aller sur l' <mark>Exercice6</mark> du github

• Copie entre 2 serveurs distants :

scp source destination

• Syntaxe si la source est distante :

scp nom_serveur:/chemin/fichier_a_copier répertoire_local

• Syntaxe si la destination est distante :

scp /chemin/fichier_a_copier nomserveur:/chemin/répertoire_distant

Etapes d'une analyse sur le cluster

Etape7: Récupérer les résultats

Aller sur l'<mark>Exercice7</mark> du github

- /tmp= espaces temporaires
- Vérifier la copie des résultats avant
- Utiliser la commande rm

cd /tmp rm -rf nom_rep

Etapes d'une analyse sur le cluster

Etape8: suppression des données

Aller sur l'<u>Exercice8</u> du github

LANCER UN JOB

- Le scheduler choisit les ressources automatiquement
- Lancer des jobs utilisant jusqu'à 24 coeurs
- Possibilité de paramétrer ce choix

Avantages

- Jobs lancés en arrière plan
 - \rightarrow possibilité d'éteindre son ordinateur
 - \rightarrow récupération des résultats automatique

- C'est le fait d'exécuter un script bash via sge
- On utilise la commande:

\$~ **sbatch** *script.sh*

Avec script.sh : le nom du script

Options des commandes slurm

Options	Description	Exemple
job-name=[name]	Donner un nom au job	sbatchjob-name=tando_blast
-p partition	Choisir une parttion en particulier	sbatch -p main job.sh
nodelist= <nodex></nodex>	Choisir un noeud en particulier	srunnodelist=node0
-N <nombre coeurs="" de=""></nombre>	Lancer avec plusieurs coeurs	Srun -N 2
mail-user= <adresse_email></adresse_email>	Envoyer un mail	sbatch mail-user=ndomassi.tando@ir d.fr

Voir plus d'options disponibles ici:

<u>Options de base avec Slurm</u> dans la rubrique Les principales options disponibles pour lancer une analyse sous Slurm:

Dans la première partie du script on renseigne les options d'exécution de slurm avec le mot clé #SBATCH (partie en vert)

#!/bin/bash

Syntaxe des scripts bash

Dans la 2e partie du script on renseigne les actions à effectuer

nom_variable1="valeur_variable1"
nom_variable2="valeur_variable2"

sleep 30 hostname

Lancer un script avec qsub

Aller sur l'<mark>Exercice9</mark> du github

Merci pour votre attention !

Le matériel pédagogique utilisé pour ces enseignements est mis à disposition selon les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions (BY-NC-SA) 4.0 International:

http://creativecommons.org/licenses/by-nc-sa/4.0/