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EXPLAIN THE VARIABILITY
Designing the experiment

3



Build an experimental design

Build an experimental design
• to control the variability during the experiment in 

order to address the biological question:
1. What is the biological question?

2. How to estimate the associated biological variabilities?

3. How to control the technical variabilities (day, lane, run, etc.)?

Biological or technical uncontrolled effects could:
– Hide/cancel the biological effect of interest

– Wrongly increase the biological effect of interest
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Experimental design

Basic
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id state

c1 control

c2 control

c3 control

t1 treated

t2 treated

t3 treated



Experimental design

Paired samples

6

id state date

control-t1 control 12/06/2016

control-t2 control 20/06/2016

control-t3 control 25/06/2016

treated-t1 treated 12/06/2016

treated-t2 treated 20/06/2016

treated-t3 treated 25/06/2016



Experimental design

Paired samples
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id state sample

sample1-control control sample1

sample1-treated treated sample1

sample2-control control sample2

sample2-treated treated sample2

sample3-control control sample3

sample3-treated treated sample3



Experimental design

Paired samples
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id tissue sample

sample1-skin skin sample1

sample1-muscle muscle sample1

sample2-skin skin sample2

sample2-muscle muscle sample2

sample3-skin skin sample3

sample3-muscle muscle sample3



Experimental design

Time course experiment
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id state sample time

sample1-0h treated sample1 0h

sample2-0h treated sample2 0h

sample3-0h treated sample3 0h

sample1-4h treated sample1 4h

sample2-4h treated sample2 4h

sample3-4h treated sample3 8h

sample1-8h treated sample1 8h

sample2-8h treated sample2 8h

sample3-8h treated sample3 8h



Experimental design

Complex design
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id strain infection

m1 B6 low

m2 B6 low

m3 B6 high

m4 B6 high

m5 SEG low

m6 SEG low

m7 SEG high

m8 SEG high



Experimental design

Complex design
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id strain infection

m1 B6 low

m2 B6 low

m3 B6 high

m4 B6 high

m5 SEG low

m6 SEG low

m7 SEG high

m8 SEG high



Experimental design

Which effect?

Confounding effect
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id state

c1 control

c2 control

c3 control

t1 treated

t2 treated

t3 treated



Experimental design

Which effect?

Confounding effect
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id state age gender date exp

c1 control 45 female 09/06/15 Louis

c2 control 52 female 11/06/15 Louis

c3 control 48 female 13/06/15 Louis

t1 treated 31 male 21/02/15 François

t2 treated 25 male 23/02/15 François

t3 treated 27 male 25/02/15 François



Experimental design

Which effect?

Confounding effect
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id state age gender date exp

c1 control 45 female 09/06/15 Louis

c2 control 36 female 11/03/15 François

c3 control 48 male 23/11/15 Louis

c4 control 22 male 15/02/15 François

t1 treated 31 female 21/02/15 François

t2 treated 25 female 03/12/15 François

t3 treated 27 male 25/07/15 Louis

t4 treated 45 male 01/01/16 Louis



HOW DEEP IS ENOUGHT?
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How deep is enought ?

Góngora-Castillo, E., & Buell, C. R. (2013). Bioinformatics 
challenges in de novo transcriptome assembly using 
short read sequences in the absence of a reference 
genome sequence. Natural Product Reports. 
doi:10.1039/c3np20099j



How deep is enought ?

Human

Majority of expressed genes and AS events can be detected with 
modest sequencing depths (~100 M filtered reads), the estimated gene 
expression levels and exon/intron inclusion levels were less accurate

• To detect expressed genes and AS events, ~100 to 150 million (M) 
filtered reads were needed.

• For a DE analysis and detect 80% of events, ~300 M filtered reads 
were needed 

• For detecting differential AS and  detect 80% of events, at least 400 M 
filtered reads were necessary

Evaluating the Impact of Sequencing Depth on Transcriptome Profiling in Human Adipose. Yichuan 
Liu et al., 2013. 



How deep is enought ?

Depends on the purpose of the experiment and the nature of the samples 
(ENCODE). 

• 100M of reads is sufficient to detect 90% of the transcripts and 81% of 
the genes of the human transcriptome. (Tung et al. 2011) 

• 20M reads (75bp) is sufficient to detect transcripts expressed at a 
medium or low level in the chicken. (Wang et al. 2011) 

• 10 M of reads allow 90% of transcripts (human, zebrafish) to be 
covered by an average of 10 reads. (Hart et al. 2013)

• Between 30M and 100M reads per sample depending on the study. 
NB.http://encodeproject.org/ENCODE/dataStandards.html



How deep is enought ?

Bacteria

« A sequencing depth of 5-10 million non- rRNA fragments enables profiling of the vast 
majority of transcriptional activity in diverse species grown under diverse culture conditions. » 

Haas, B. J., Chin, M., Nusbaum, C., Birren, B. W., & Livny, J. (2012). How deep is deep enough for RNA-Seq profiling of 
bacterial transcriptomes? BMC genomics, 13, 734. doi:10.1186/1471-2164-13-734

E. Coli  : 5000 genes
intergenic (IGR)
antisense to ORFs or ncRNAs (AS) 



EXPLAIN THE VARIABILITY
Bias
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The variability

21

Variability

Lane effect

Run effect
Library 

prep effect

Biological 
effect

Condition effect



The variability
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Technical replicates
+ normalization
+ statistics

Variability

Lane 
effect

Run 
effect

Library prep 
effect

Biological 
effect

Condition effect



The variability
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Technical replicates
+ normalization
+ statistics

Biological replicates
+ statitics

+

Variability

Lane 
effect

Run 
effec

t

Library 
prep 
effect

Biological 
effect

Condition effect



REPLICATES
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Replicates
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Accuracy

RNA-Seq is not a mature technology. 

Experiments should be performed with three or more biological replicates, unless there is a 
compelling reason why this is impractical or wasteful 



Biological vs. technical replicates
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Biological vs. technical replicates
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Technical replicates
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Technical vs biological replicates 

• Increasing the number of bio. replicates increases the 
precision and generalizability of the results 

• Doing technical replication may be important in studies 
where low abundant mRNAs are the focus. 

• Technical variability => inconsistent detection of exons at 
low levels of coverage (<5reads per nucleotide) (McIntyre et 
al. 2011) 

Guidelines from the Encyclopedia of DNA Elements (ENCODE) 
consortium (June 2011) 



Experiment design : ENCODE recommandations 

• A typical R2 (Pearson) correlation of gene expression 
(RPKM) between two biological replicates, for RNAs that 
are detected in both samples using RPKM or read counts, 
should be between 0.92 to 0.98. 

• Experiments with biological correlations that fall below 0.9 
should be either be repeated or explained. 

• Correlation of >0.9 between isogenic replicates (replicates 
from biosamples derived from the same model organism 
strain)  and >0.8 between anisogenic replicates (replicates 
from biosamples derived from different model organism 
strain) .



Correlation analysis : PtR Perl-to-R

Compare replicate
trinityrnaseq-2.8.4/Analysis/DifferentialExpression/PtR --matrix 
salmon.isoform.counts.matrix --samples ../sample_qc.txt --log2 
--min_rowSums 10 --compare_replicates

Correlation matrix
trinityrnaseq-2.8.4/Analysis/DifferentialExpression/PtR --matrix 
salmon.isoform.counts.matrix --samples ../sample_qc.txt --log2 
--min_rowSums 10 --CPM --sample_cor_matrix

Principal composant analysis
trinityrnaseq-2.8.4/Analysis/DifferentialExpression/PtR --matrix 
salmon.isoform.counts.matrix --samples ../sample_qc.txt --log2 
--min_rowSums 10 --CPM --center_rows --prin_comp 3

31

Raw count matrix -> counts-per-million (CPM) data transformation followed by a log2 transform



Compare replicates for each of your samples
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Sequencing depth Correlation matrix

Pearson analysis



Compare replicates for each of your samples
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Scatter plot MA plot

Pairwise comparisons of replicate log(CPM) values. 
2-fold different are highlighted in red:

x-axis: mean log(CPM), y-axis log(fold_change).
2-fold different are highlighted in red:



Compare Replicates Across Samples

Correlation matrixPCA



Simka
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https://github.com/GATB/simka

Simka is a de novo comparative metagenomics tool. 
Simka represents each dataset as a k-mer spectrum and compute several classical ecological 
distances between them.

Presence/absence Jaccard index Abundance BrayCurtis index

https://github.com/GATB/simka


Sample size 

Why increase the number of biological replicates? 

• Generalizing the results to the population 

• Estimate more accurately the variation of each 
transcript  individually (Hart et al. 2013) 

• Improve the detection of differential transcripts and 
rate control  false positives: TRUE from 3 (Sonenson 
et al, 2013, Robles et al 2012.)



Sample size 

How many biological replicates are needed in an RNA-seq experiment and 
which differential expression tool should you use? Schurch et al. RNA. 
2016 Jun; 22(6): 839–851.

Recommendations for RNA-seq experiment design

« The results of this study suggest the following should be considered when designing an 
RNA-seq experiment for DGE »:

• At least six replicates per condition for all experiments.
• At least 12 replicates per condition for experiments where identifying the majority of all 

DE genes is important.
• For experiments with <12 replicates per condition; use edgeR (exact) or DESeq2.
• For experiments with >12 replicates per condition; use DESeq.
• Apply a fold-change threshold appropriate to the number of replicates per condition 

between 0.1 ≤ T ≤ 0.5 (see Fig. 2 and the discussion of tool performance as a function of 
replication).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878611/figure/SCHURCHRNA053959F2/


Sample size 

A. Conesa, P. Madrigal, S. Tarazona, D. Gomez-Cabrero, A. Cervera, A. McPherson, M. W. 
Szcześniak, D. J. Gaffney, L. L. Elo, X. Zhang, and A. Mortazavi, “A survey of best practices for 
RNA-seq data analysis.,” Genome Biol., vol. 17, p. 13, 2016.



Sample size 

Schurch et al. RNA. 2016



A statistical answer : Conclusions

This work quantitatively explores comparisons between 
contemporary analysis tools and experimental design choices for the 
detection of differential expression using RNA-Seq. …

• With regard to testing of various experimental designs, this work 
strongly suggests that greater power is gained through the use of 
biological replicates relative to library (technical) replicates and 
sequencing depth. 

• Strikingly, sequencing depth could be reduced as low as 15% 
without substantial impacts on false positive or true positive rates.

Robles, J. A., Qureshi, S. E., Stephen, S. J., Wilson, S. R., Burden, C. J., & Taylor, J. M. (2012). 
Efficient experimental design and analysis strategies for the detection of differential 
expression using RNA-Sequencing. BMC Genomics, 13, 484. 



Sample size vs depth

It’s up to you! (Haas et al., 2012, Liu Y. et al 2013) 

• Detection of differential transcripts: 
– (+) biological replicates 

• Construction / transcriptome annotation: 
– (+) depth & (+) conditions 

• Search variants: 
– (+) biological replicates  & (+) depth



Pool

? Are those pooling are the same?
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Pool

? Are those pooling are the same?

– One sample with one over expressed gene can 
flood the count

43

samp1 samp2 FC

gene1 10
0

10
0

10
0

20
0

20
0

20
0

1/2

gene2   0 0 30
0

  0 0 60
0

1/2

count 300 600



The Fold change w/out replicates

? Is FC enough to describe the variability?
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The Fold change w/out replicates

? Is FC enough to describe the variability?

are the same ?

– FC can mask genes with large differences (B-A) but 
small ratios (A/B)

45

samp1 samp2 FC

gene1 1 2 1/2

gene2 1000 2000 1/2



INPUTS
HOW TO PERFORM A DEG ANALYSIS

46



Inputs

1. Raw count table
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id LL06_1 LL06_2 LL09_1 LL09_2

comp3130_seq1 12 6 9 15

comp3131_seq2 167 233 987 856

comp4523_seq1 685 785 648 458

comp6984_seq3 87 68 354 591



Inputs

2. Samples metadata / Samples info

48

samplename batch light hour …

LL06_1 1 LL 06

HL06_1 1 HL 06

LL09_1 1 LL 09

HL09_1 1 HL 09

LL12_1 1 LL 12

HL12_1 1 HL 12

LL06_2 2 LL 06

HL06_2 2 HL 06

LL09_2 2 LL 09



Inputs

• The scale

– Exon level -> DEXSeq
– Gene level
– Isoform level

49

Exon 1 Exon 2 Exon 3 Exon 4



THE WORKFLOW
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The workflow

Raw counts
Normalization

Sample info

Normalized counts
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The workflow

Raw counts
Normalization

Sample info

Statistical Model
Calculation of p .value

Normalized counts p.value
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The workflow

Raw counts
Normalization

Sample info

Statistical Model
Calculation of p .value

Normalized counts p.value
Filtering on p.value

Filtered normalized 
counts



54

The workflow

Raw counts
Normalization

Sample info

Statistical Model
Calculation of p .value

Normalized counts p.value
Filtering on p.value

Filtered normalized 
counts

Hierarchical clutering

PCA

Heatmap / 
Dendogrammes/ 

Clusters

Graphic representation



NORMALIZATION
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Normalization

Raw counts
Normalization

Normalized counts



Normalization

WARNING
• It is important to recognize that the number of 

reads which overlap a gene is not a direct measure 
of the gene’s expression.

=> Genes length bias

=> One effect of this bias is to reduce the ability to detect 
differential expression among shorter genes simply from 
the lack of coverage since the power of statistical tests 
involving count data decreases with lower number of 
count

57
Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
Franck Rapaport, Raya Khanin, Yupu Liang, Mono Pirun, Azra Krek, Paul Zumbo, Christopher E. Mason, Nicholas D.  Socci and Doron Betel



Normalization

Why performing normalisation ?
– Between-sample  compare a gene in different sample

• Depth of sequencing == library size
• Sampling bias during the libraries construction == batch 

effect
• Presence of majority fragments == saturation
• Sequence composition du to PCR-amplification step (GC 

content)

– Within-sample  compare genes in a sample
• Gene length
• Sequence composition (GC content)

58



Normalization

Why

59



Normalization

How ?
– Between-lane  compare a gene in different sample

• Scale data on the libraries sizes and more complex methods
• Using housekeeping genes

– Within-lane  compare genes in a sample
• Normalize on gene lengths

60



Normalization

How ?
– Between-lane  compare a gene in different sample

• Scale data on the libraries sizes and more complex methods
• Using housekeeping genes

– When : 

Condition A Condition B



Normalization

How ?
– Between-lane  compare a gene in different sample

• Scale data on the libraries sizes and more complex methods
• Using housekeeping genes

– When : 

Condition A Condition B



Normalization

How ?
– Between-lane  compare a gene in different sample

• Scale data on the libraries sizes and more complex methods
• Using housekeeping genes

– When : 

Condition A Condition B



Normalization

How ?
– Between-lane  compare a gene in different sample

• Scale data on the libraries sizes and more complex methods
• Using housekeeping genes

– When : 

– Examples : actin, GAPDH, ubiquitin, HSP90, Histone, rRNA, tRNA …

Condition A Condition B



Normalization

How ?
– Between-lane  compare a gene in different sample

• Scale data on the libraries sizes and more complex methods
• Using housekeeping genes

– When : 

– Examples : actin, GAPDH, ubiquitin, HSP90, Histone, rRNA, tRNA …

Condition A Condition B

It depends



Normalization

Normalization methods
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http://www.cnrs.fr/inee/recherche/fichiers/EPEGE/Communications/
Julie_AUBERT.pdf

Total Counts (TC)
 - Motivation: greater lane sequencing depth => greater 
counts
 
- Assumption: read counts are proportional to expression 
level and sequencing depth (same RNAs in equal proportion) 

 - Method: divide transcript read count by total number of 
reads

 - Problem: Sensitive to the presence of majority genes



Normalization

Normalization methods
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http://www.cnrs.fr/inee/recherche/fichiers/EPEGE/Communications/
Julie_AUBERT.pdf

Total number of reads (library sizes)
 - Motivation: greater lane sequencing depth => greater counts
 - Assumption: read counts are proportional to expression level and sequencing 
depth 

(same RNAs in equal proportion) 
 - Method: divide transcript read count by total number of reads

 - Problem: Sensitive to the presence of majority genes

Upper Quartile normalization (UQ) or Median (Med)
 - Motivation:  total read count is strongly dependent on a few 
highly expressed transcripts

 - Assumption:  read counts are proportional to expression 
level and sequencing depth

 - Method: divide transcript read count by, e.g., upper 
quartile

 - Problem: Sensitive to the presence of majority genes



Normalization

Normalization methods
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http://www.cnrs.fr/inee/recherche/fichiers/EPEGE/Communications/
Julie_AUBERT.pdf

Total number of reads (library sizes)
 - Motivation: greater lane sequencing depth => greater counts
 - Assumption: read counts are proportional to expression level and sequencing 
depth 

(same RNAs in equal proportion) 
 - Method: divide transcript read count by total number of reads

 - Problem: Sensitive to the presence of majority genes

Upper Quartile normlization (UQ)
 - Motivation:  total read count is strongly dependent on a few highly expressed 
transcripts
 - Assumption:  read counts are proportional to expression level and sequencing 
depth
 - Method: divide transcript read count by, e.g., upper quartile

 - Problem: Sensitive to the presence of majority genes

Full quantile normalization (FQ)
 - Motivation:  total read count is strongly dependent on a few highly expressed 
transcripts
 - Assumption:  read counts have identical distribution across lanes
 - Method: all quantiles of the count distributions are matched between lanes

 - Problem: Can increase between group variance 
Is based on an very (too) strong assumption (similar distributions)

Reads Per Kilobase per Million mapped reads (RPKM / FPKM)
 - Motivation:   greater lane sequencing depth and gene 
length => greater counts whatever the expression level 

Allow comparaison of expression of different genes in a 
sample
 - Assumption:   read counts are proportional to expression 
level, gene length and sequencing depth (same RNAs in 
equal proportion)
 - Method: divide gene read count by total number of reads 
(in million) and gene length (in kb)

 - Problem: Sensitive to the presence of majority genes
Implies a similarity between RNA repertoires expressed



Normalization

• RPFM / FPFM
– Pro

• Simple, easy to understand
• Comparable between different genes within the same dataset

– Cons
• Small changes in highly expressed genes (especially differences in rRNA 

contamination) cause a global shift in all other values
• Small changes across lowly expressed genes (especially differences in 

DNA contamination) cause differences across a wide number of genes.

• Mixing of noise levels
• Noise is generally linked to the number of observations
• The same RPKM value could come from

– A small lowly observed gene with high noise
– A large well observed gene with low noise

70Simon Andrews - simon.andrews@babraham.ac.uk - RNA-Seq Analysis



Normalization

• RPFM / FPFM
– Pro

• Simple, easy to understand
• Comparable between different genes within the same dataset

– Cons
• Small changes in highly expressed genes (especially differences in rRNA 

contamination) cause a global shift in all other values
• Small changes across lowly expressed genes (especially differences in 

DNA contamination) cause differences across a wide number of genes.

• Mixing of noise levels
• Noise is generally linked to the number of observations
• The same RPKM value could come from

– A small lowly observed gene with high noise
– A large well observed gene with low noise

71Simon Andrews - simon.andrews@babraham.ac.uk - RNA-Seq Analysis

ConspiracyConspiracy



Normalization

Normalization methods

72http://www.cnrs.fr/inee/recherche/fichiers/EPEGE/Communications/
Julie_AUBERT.pdf

Total number of reads (library sizes)
 - Motivation: greater lane sequencing depth => greater counts
 - Assumption: read counts are proportional to expression level and sequencing 
depth 

(same RNAs in equal proportion) 
 - Method: divide transcript read count by total number of reads

 - Problem: Sensitive to the presence of majority genes

Upper Quartile normlization (UQ)
 - Motivation:  total read count is strongly dependent on a few highly expressed 
transcripts
 - Assumption:  read counts are proportional to expression level and sequencing 
depth
 - Method: divide transcript read count by, e.g., upper quartile

 - Problem: Sensitive to the presence of majority genes

Full quantile normalization (FQ)
 - Motivation:  total read count is strongly dependent on a few highly expressed 
transcripts
 - Assumption:  read counts have identical distribution across lanes
 - Method: all quantiles of the count distributions are matched between lanes

 - Problem: Can increase between group variance 
Is based on an very (too) strong assumption (similar distributions)

Reads Per Kilobase per Million mapped reads (RPKM / FPKM)
 - Motivation:   greater lane sequencing depth and gene 
length => greater counts whatever the expression level 

The Effective Library Size concept : TMM (edgeR) and DESeq

 - Motivation:   Different biological conditions express 
different RNA repertoires, leading to different total amounts 
of RNA

 - Assumption:   A majority of transcripts is not differentially 
expressed

           As many down- as up-regulated genes

 - Method: Minimizing effect of (very) majority sequences

 - Problem: ?



Normalization

Normalization methods

73http://www.cnrs.fr/inee/recherche/fichiers/EPEGE/Communications/
Julie_AUBERT.pdf

Total number of reads (library sizes)
 - Motivation: greater lane sequencing depth => greater counts
 - Assumption: read counts are proportional to expression level and sequencing 
depth 

(same RNAs in equal proportion) 
 - Method: divide transcript read count by total number of reads

 - Problem: Sensitive to the presence of majority genes

Upper Quartile normlization (UQ)
 - Motivation:  total read count is strongly dependent on a few highly expressed 
transcripts
 - Assumption:  read counts are proportional to expression level and sequencing 
depth
 - Method: divide transcript read count by, e.g., upper quartile

 - Problem: Sensitive to the presence of majority genes

Full quantile normalization (FQ)
 - Motivation:  total read count is strongly dependent on a few highly expressed 
transcripts
 - Assumption:  read counts have identical distribution across lanes
 - Method: all quantiles of the count distributions are matched between lanes

 - Problem: Can increase between group variance 
Is based on an very (too) strong assumption (similar distributions)

Reads Per Kilobase per Million mapped reads (RPKM / FPKM)
 - Motivation:   greater lane sequencing depth and gene 
length => greater counts whatever the expression level 

The Effective Library Size concept : TMM (edgeR) and DESeq

 - Motivation:   Different biological conditions express 
different RNA repertoires, leading to different total amounts 
of RNA

 - Assumption:   A majority of transcripts is not differentially 
expressed

           As many down- as up-regulated genes

 - Method: Minimizing effect of (very) majority sequences

 - Problem: ?



Normalization

The Effective Library Size
– TMM / edgeR 

Uses the number of mapped reads (i. e., count table column sums) 
and estimates an additional normalization factor to account for 
sample-specific effects (e. g., diversity); these two factors are 
combined and used as an offset in the NB model.

– DESeq 
Defines a virtual reference sample by taking the median of each 
gene’s values across samples, and then computes size factors as the 
median of ratios of each sample to the reference sample.

74
Count-based differential expression analysis of RNA sequencing data using R and Bioconductor
Simon Anders, Davis J. McCarthy, Yunshen Chen, Michal Okoniewski, Gordon K.Smyth, Wolfgang Huber & Mark D. Robinson



Normalization

75MA Dillies, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA 
sequencing data analysis. Brief Bioinform (2013) 14 (6): 671-683 :480

Figure 1:

Comparison of normalization methods for 
real data. 

(A)Boxplots of log2(counts + 1) for all 
conditions and replicates in the M. 
musculus data, by normalization 
method. 

(B)Boxplots of intra-group variance for one 
of the conditions in the M. musculus 
data, by normalization method. 

(C)Analysis of housekeeping genes for the 
H. sapiens data. 

(D) Consensus dendrogram of differential 
analysis results, using the DESeq 
Bioconductor package, for all 
normalization methods across the four 
datasets under consideration. 



Normalization

"Only the DESeq and TMM normalization methods are robust 
to the presence of different library sizes and widely different 
library compositions..." 

Dillies et al., Brief Bioinf, 2013. doi:10.1093/bib/bbs046
76



STATISTICS
Models
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Statistics

Raw counts
Normalization

Sample info

Statistical Model
Calculation of p .value

Normalized counts p.value



Statistics …

• Rappel

79



Statistics

Significant?
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Statistics

Significant?
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Statistics Models

The model

82

Poisson distribution
 - Motivation: Poisson distribution appears when things are counted
 - Assumption: mean and variance are the same
 - Method: Poisson distribution has only one parameter  λ (expected number of 
reads)

 - Problem: 
Good distribution for technical replicates
But biological variability of RNA-seq count data cannot be capture using the 
Poisson distribution because data present overdispersion
(i.e., variance of counts larger than mean)

http://smpgd2012.univ-lyon1.fr/IMG/pdf/NGS/gonzalez-smpgd2012.pdf



Statistics Models

The model
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Poisson distribution
 - Motivation: Poisson distribution appears when things are counted
 - Assumption: mean and variance are the same
 - Method: Poisson distribution has only one parameter  λ (expected number of 
reads)

 - Problem: 
Good distribution for technical replicates
But biological variability of RNA-seq count data cannot be capture using the 

Poisson distribution because data present overdispersion
(i.e., variance of counts larger than mean)

Simon Anders – EMBL – Differential expression analysis for sequencing count data



Statistics Models

The model
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Poisson distribution
 - Motivation: Poisson distribution appears when things are counted
 - Assumption: mean and variance are the same
 - Method: Poisson distribution has only one parameter  λ (expected number of 
reads)

 - Problem: 
Good distribution for technical replicates
But biological variability of RNA-seq count data cannot be capture using the 

Poisson distribution because data present overdispersion
(i.e., variance of counts larger than mean)

Wikipedia

Mean λ
Variance λ
Mean λ
Variance λ



Statistics Models

The model
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Poisson distribution
 - Motivation: Poisson distribution appears when things are counted
 - Assumption: mean and variance are the same
 - Method: Poisson distribution has only one parameter  λ (expected number of 
reads)

 - Problem: 
Good distribution for technical replicates
But biological variability of RNA-seq count data cannot be capture using the 

Poisson distribution because data present overdispersion
(i.e., variance of counts larger than mean)

• Consider this situation:
• Several flow cell lanes are filled with aliquots of the same 

prepared library.
• The concentration of a certain transcript species is 

exactly the same in each lane.
• We get the same total number of reads from each lane.

• For each lane, count how often you see a read from the 
transcript. Will the count all be the same?

• No! Even for equal concentration, the counts will vary. 
This theoretically unavoidable noise is called shot noise.

• Consider this situation:
• Several flow cell lanes are filled with aliquots of the same 

prepared library.
• The concentration of a certain transcript species is 

exactly the same in each lane.
• We get the same total number of reads from each lane.

• For each lane, count how often you see a read from the 
transcript. Will the count all be the same?

• No! Even for equal concentration, the counts will vary. 
This theoretically unavoidable noise is called shot noise.

Simon Anders – EMBL – Differential expression analysis for sequencing count data



Poisson distribution
 - Motivation: Poisson distribution appears when things are counted
 - Assumption: mean and variance are the same
 - Method: Poisson distribution has only one parameter  λ (expected number of 
reads)

 - Problem: 
Good distribution for technical replicates
But biological variability of RNA-seq count data cannot be capture using the 

Poisson distribution because data present overdispersion
(i.e., variance of counts larger than mean)

Statistics Models

The model

86

Negative Binomial (NB): edgeR and DESeq
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• In this paper, we have evaluated and compared eleven methods for differential expression analysis of RNA-seq data. Table 2 summarizes the main 
findings and observations. No single method among those evaluated here is optimal under all circumstances, and hence the method of choice in a 
particular situation depends on the experimental conditions. Among the methods evaluated in this paper, those based on a variance-stabilizing 
transformation combined with limma (i.e., voom+limma and vst+limma) performed well under many conditions, were relatively unaffected by 
outliers and were computationally fast, but they required at least 3 samples per condition to have sufficient power to detect any differentially 
expressed genes. As shown in the supplementary material (Additional file 1), they also performed worse when the dispersion differed between the 
two conditions. The non-parametric SAMseq, which was among the top performing methods for data sets with large sample sizes, required at least 4-
5 samples per condition to have sufficient power to find DE genes. For highly expressed genes, the fold change required for statistical significance by 
SAMseq was lower than for many other methods, which can potentially compromise the biological significance of some of the statistically 
significantly DE genes. The same was true for ShrinkSeq, which however has an option for imposing a fold change requirement in the inference 
procedure.

• Small sample sizes (2 samples per condition) imposed problems also for the methods that were indeed able to find differentially expressed genes, 
there leading to false discovery rates sometimes widely exceeding the desired threshold implied by the FDR cutoff. For the parametric methods this 
may be due to inaccuracies in the estimation of the mean and dispersion parameters. In our study, TSPM stood out as the method being most 
affected by the sample size, potentially due to the use of asymptotic statistics. Even though the development goes towards large sample sizes, and 
barcoding and multiplexing create opportunities to analyze more samples at a fixed cost, as of today RNA-seq experiments are often too expensive to 
allow extensive replication. The results conveyed in this study strongly suggest that the differentially expressed genes found between small 
collections of samples need to be interpreted with caution and that the true FDR may be several times higher than the selected FDR threshold.

• DESeq, edgeR and NBPSeq are based on similar principles and showed, overall, relatively similar accuracy with respect to gene ranking. However, the 
sets of significantly differentially expressed genes at a pre-specified FDR threshold varied considerably between the methods, due to the different 
ways of estimating the dispersion parameters. With default settings and for reasonably large sample sizes, DESeq was often overly conservative, 
while edgeR and in particular NBPSeq often were too liberal and called a larger number of false (and true) DE genes. In the supplementary material 
(Additional file 1) we show that varying the parameters of edgeR and DESeq can have large effects on the results of the differential expression 
analysis, both in terms of the ability to control type I error rates and false discovery rates and in terms of the ability to detect the truly DE genes. 
These results also show that the recommended parameters (that are used in the main paper) are indeed well chosen and often provide the best 
results.

• EBSeq, baySeq and ShrinkSeq use a different inferential approach, and estimate the posterior probability of being differentially expressed, for each 
gene. baySeq performed well under some conditions but the results were highly variable, especially when all DE genes were upregulated in one 
condition compared to the other. In the presence of outliers, EBSeq found a lower fraction of false positives than baySeq for large sample sizes, while 
the opposite was true for small sample sizes.

93A comparison of methods for differential expression analysis of RNA-seq data. Charlotte Soneson1 and Mauro Delorenzi
BMC Bioinformatics 2013, 14:91 doi:10.1186/1471-2105-14-91
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• limma (i.e., voom+limma and vst+limma) 
– unaffected by outliers
– but they required at least 3 samples per condition

• SAMseq, ShrinkSeq (The non-parametric) 
– top performing methods for data sets with large sample sizes
– required at least 4-5 samples per condition
– fold change required for statistical significance was lower  compromise the biological significance
– Small sample sizes inaccuracies in the estimation of the mean and dispersion parameters

• TSPM 
– most affected by the sample size

• DESeq, edgeR and NBPSeq 
– showed, overall, relatively similar accuracy with respect to gene ranking
– recommended parameters well chosen and often provide the best results
– pre-specified FDR threshold varied considerably between the methods
– DESeq : overly conservative
– edgeR, NBPSeq : too liberal and called a larger number of false (and true) DE genes.
– edgeR, DESeq : varying the parameters of can have large effects on the results

• EBSeq, baySeq and ShrinkSeq (posterior probability)
–  baySeq performed well under some conditions ; results were highly variable, especially when all DE genes were 

upregulated in one condition
– EBSeq  In the presence of outliers, found a lower fraction of false positives for large sample sizes not fot small sample 

sizes
– baySeq In the presence of outliers, found a lower fraction of false positives true for small sample sizes  not fot large 

sample sizes

94A comparison of methods for differential expression analysis of RNA-seq data. Charlotte Soneson1 and Mauro Delorenzi
BMC Bioinformatics 2013, 14:91 doi:10.1186/1471-2105-14-91
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The results
– p.value

• The p-value of the test statistic is a 
way of saying how extreme that 
statistic is for our sample data. The 
smaller the p-value, the more unlikely 
the observed sample.

– adjusted p.value / False Discovery 
Rate
• Used in multiple hypothesis testing
• Corrections

– Bonferroni
– Benjamini-Hochberg (BH)
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Filtering
– alpha risk

• The number alpha is the threshold value that we measure p-
values against. It tells us how extreme observed results must 
be in order to reject the null hypothesis of a significance test.

• Must be set in advance !

• Ex:
– For results with a 90% level of confidence, the value of alpha is 1 - 0.90 = 0.10. 
– For results with a 95% level of confidence, the value of alpha is 1 - 0.95 = 0.05.
– For results with a 99% level of confidence, the value of alpha is 1 - 0.99 = 0.01.

• So:
– alpha  > pvalue    H0 is rejected     
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Log Fold Change - LogFC

log2(cond2/cond1)

100

cond1 cond2 FC 2/1 logFC

100 800 8 3

100 400 4 2

100 200 2 1

200 100 0.500 -1

400 100 0.250 -2

800 100 0.125 -3
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